

Deconvolving LADAR Images
Of Bar Codes for

Construction Site Object Recognition

David E. Gilsinn
Mathematical and Computational Sciences Division

Information Technology Laboratory (ITL)
National Institute of Standards and Technology

Gaithersburg, MD 20899-8910

Geraldine S. Cheok
Materials and Construction Research Division

Building and Fire Research Laboratory (BFRL)
National Institute of Standards and Technology

Gaithersburg, MD 20899- 8611

Dianne P. O’Leary
Computer Science Department

University of Maryland
College Park, MD 20742

NISTIR 7044

U.S. Department of Commerce
Technology Administration

National Institute of Standards and Technology
Gaithersburg, MD 20899

 1

 Certain trade names and company products are mentioned in the text or identified in an
illustration in order to adequately specify the experimental procedure and equipment
used. In no case does such an identification imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it imply that the products
are necessarily the best available for the purpose.

 2

Abstract

 This report discusses a general approach to reconstructing ground truth intensity
images of bar codes that have been distorted by LADAR optics. The first part of this
report describes the experimental data collection of several bar code images along with
experimentally obtained estimates of the LADAR beam size and configuration at various
distances from the source. Mathematical models of the beam size and configuration were
developed and were applied through a convolution process to a simulated set of bar code
images similar to the experiment. This was done in order to estimate beam spread
models (beam spread models are unique to each specific LADAR) to be used in a
deconvolution process to reconstruct the original bar code images from the distorted
images. In the convolution process a distorted image in vector form g is associated with
a ground truth image f and each element of g is computed as a weighted average of
elements of f that are neighbors to that associated element. The deconvolution process
involves a least squares procedure that approximately solves a matrix equation of the
form Hf = g where H is a large sparse matrix that is made up of elements from the beam
spread function. The results of applying the several beam spread models to deconvolving
the bar code images are given. Deconvolution of data measured at 10 m was more
successful than that for 20 m or 40 m. The appendices include more detailed discussion
of the least squares algorithm used and sample programs used during the various phases
of the analysis.

Key Words: bar codes, beam spread, deconvolution, image processing, LADAR, object
recognition, sparse matrix.

 3

Table of Contents

1.0 Introduction .. 5
2.0 Data Acquisition ... 8

2.1 LADAR Specifications ... 8
2.2 Reflective Material ... 9
2.3 Reflectivity vs Distance Experiment ... 11
2.4 Bar Code Patterns .. 12

2.4.1 Recognizing a Simple Bar Pattern at Close Range.. 12
2.4.2 Distinguishing Bar Patterns at Varying Distances... 13
2.4.3 MATLAB Bar Code Identification Procedure.. 18
2.4.4 Bar Code Measurement Results... 18

2.5 Beam Property Measurements .. 19
2.5.1 Beam Size and Divergence Characteristics ... 19
2.5.2 Spread Function Measurements by Spot Reflection.. 24
2.5.3 Summary of Beam Property Measurements .. 26

3.0 Image Blurring Fundamentals .. 29
4.0 Numerical Image Reconstruction Procedures ... 35
5.0 Computational Results ... 42

5.1 Creating Simulated Ground Truth Bar Code Data... 42
5.2 Creating Simulated Distorted Bar Code Images.. 45

5.2.1 Simulated Three Beam Model ... 45
5.2.2 Simulated Blurred Bar Codes .. 45

5.3 Ground Truth Reconstruction Using Various Beam Spread Functions...................................... 49
5.3.1 Reconstruction Using Averaging Filters.. 50
5.3.2 Reconstruction Using Filters Based on Spot Reflections .. 53
5.3.3 Convergence Aspects of the Reconstruction Process .. 55
5.3.4 Reverse Engineering Filter Construction... 57

6.0 Summary and Future Directions... 59
6.1 Summary ... 59
6.2. Future Work .. 60

7.0 References ... 61
APPENDIX A: Fast Matrix Vector Products .. 62

A.1 Calculating Hf .. 62
A.2 Calculating HTg... 65

APPENDIX B: LSQR Algorithm .. 69
B.1 Computing U and V ... 69
B.2 The sequential minimization algorithm ... 71

APPENDIX C: Sample Programs... 80
C1. MATLAB Script to Isolate Bar Codes ... 82
C2. MATLAB Script to Create Simulated Bar Codes... 89
C3. FORTRAN 90 Convolution Program .. 102

C3.1 Program CONVOLVE.F90.. 102
C3.2 Sample Input Parameter File.. 107

C4. FORTRAN 90 Deconvolution Program... 108
C4.1 Program DECONVOLVE.F90 .. 108
C4.2 Sample Input Parameter File.. 116

C5. FORTRAN 90 Program to Reverse Engineer the Beam Spread Function............................... 117
C5.1 Matrix alignment.. 117
C5.2 SPREAD_FUNCTION.F90 program .. 119
C5.3 Sample Input Parameter File.. 129

 4

1.0 Introduction

 Imaging sensors such as LADARs (laser distance and ranging devices) are used to
rapidly acquire data of a scene to generate three dimensional (3D) models. The increased
interest in this technology is due to the substantial growth in applications for real-time
scene updates driven by the recent advances in imaging sensor software and hardware.
Current applications include 3D modeling, site surveillance, map/terrain
update/reconnaissance, bathymetry1, indoor/outdoor visual inspection, autonomous
control navigation, and collision avoidance.

 Imaging sensors are used to obtain two- or three-dimensional arrays of values such as
range, intensity, or other characteristics of a scene. Currently available LADARs can
gather four pieces of information – range to an object, two spatial angular measurements,
and the strength of the returned signal (intensity). Some instruments provide other
spectral information, such as Red-Green-Blue (RGB) colors. Various methods are used
to convert the data, which are collected in the form of point clouds, into meaningful 3D
models of the actual environment for visualization and scene interpretation. A point
cloud is a set of x, y, z points acquired by the LADAR during a scan. The need for
accurate representations varies with the purpose of the application. In the construction
industry, an accurate representation aids in determining payment for completed work,
determining if construction errors are being made, and in tracking work progress on a
project. In autonomous navigation, an accurate representation would result in crash
avoidance and successful course navigation. In military target acquisition, an accurate
model could mean the difference between hitting or missing a target.

 The data points within the point cloud acquired by a LADAR are indistinguishable
from each other with regard to their origin; i.e., there is no way to tell if a point is
reflected from a tree or from a building. As a result, the methods used to generate the
models treat all points identically and the results are indistinguishable “humps/bumps”on
a 3D surface model of a scene. Current surface generation methods using LADAR data
require intensive manual intervention to recognize, replace, and/or remove objects within
a scene. This is illustrated in Fig. 1.1 where prior knowledge and human intervention
was required to identify objects in the overlaid sets of data points obtained from several
scans. As a result, aids to object identification have been recognized by users as a highly
desirable feature and a high priority area of research.

 The use of bar codes or UPC (Universal Product Code) symbols has become the
universal method for the rapid identification of objects ranging from produce to airplane
parts. The same method could also be used to identify objects within a construction
scene. This would involve using the LADAR to “read” a bar code. The concept is to use
the intensity data from the LADAR to distinguish the bar pattern. The advantage of this
concept is that no additional hardware or other sensor data is required. The basis for this
concept lies in the high intensity values obtained from highly reflective materials.

1 Mapping of underwater terrain.

 5

 Using ba
• De

hig
• Rea

• Dis
• Rea

 Early L
20 m, the
techniques
convolutio
consequen
distances a

Trees

Bldg. 205Bldg.
312

Silt fence

Tree

Dirt pile

Truck

Point Cloud of Initial Terrain

Figure 1.1. Plot of the point clouds of data acquired from several scans
of a portion of the grounds on the site of the National Institute of
Standards and Technology (NIST) in Gaithersburg, Maryland.
r codes to identify objects on construction sites leads to several challenges:
termine the appropriate material for the bar codes – the material has to be
hly reflective and durable.
d bar code from 100 m or greater.
- The typical size of a construction site is generally 150 m or greater. This

translates into the ability of the instrument to capture sufficient points on
the bar code for correct identification. This in turn leads to the physical
size of the bar codes and a hardware requirement, the scanner’s angular
resolution. The two factors, bar code size and scanner resolution, are
related because a scanner with better resolution would require smaller bar
codes.

tinguish bar code points from the other points in a scene.
d bar codes that are skewed.

ADAR imaging results from test bar codes showed that at distances beyond
intensity images were too blurred to be readable and that image processing
 were potentially necessary to reconstruct the image. The blurring or
n of the image is a result of the low resolution (number of pixels/unit area; a
ce of the instrument’s angular resolution) of the intensity images at longer
nd of distortion of the intensity image by the LADAR optics and by data

6

processing. As a result, an investigation of possible methods to de-blur (deconvolve) the
intensity images was conducted. Deconvolution of the image involves reversing the
convolution, implying that if the convolution process was known, the image may be
reconstructed.

 This report documents an effort to use a specific LADAR to “read” bar codes of a
highly reflective material and the effort to determine a convolution-based method to
reconstruct the image. This latter effort includes developing software to convolve images
based on the characteristics of the LADAR, simulations to verify the software and the
reconstruction of the convolved and actual LADAR images. Section 2 describes the
process of data acquisition by the LADAR. Section 3 introduces image blurring
fundamentals. Section 4 describes numerical image reconstruction procedures. Section 5
discusses computational results. Section 6 gives references. Section 7 provides a
summary plus a brief discussion of future work. Appendix A introduces a fast matrix-
vector product algorithm. Appendix B describes the LSQR algorithm of Paige and
Saunders. A listing of the software is given in Appendix C.

 7

2.0 Data Acquisition

2.1 LADAR Specifications

 A Riegl scanner, Fig. 2.1, was used for all the experiments. It returns four pieces of
information – range, two spatial angular measurements and intensity. The intensity is a
dimensionless quantity that ranges from 0 (least reflective) to 255 (most reflective) which
is based on the strength of the return signal.

 The specified accuracy of the LADAR is ±2 cm in range accuracy with a maximum
range of 150 m. The field-of-view is 360º in the horizontal direction and 150º in the
vertical direction. The LADAR uses a pulsed (17 ns) laser with a wavelength of 903 nm.
It is mounted on a pan-tilt device whose horizontal and vertical movements are controlled
by two stepper motors. The angular resolution, both horizontal and vertical, is 0.045º.
The manufacturer’s data states that the size of the beam as it exits the LADAR is 42 mm
(W) by 25 mm (H) and the beam has a 3 mrad divergence.

 Elementary calculations show that the minimum vertical or horizontal distance
between pixels is approximately 8 mm, 16 mm, and 31 mm for distances of 10 m, 20 m,
and 40 m, respectively.

 Figure 2.1. Laser Scanner.

 8

2.2 Reflective Material

 In order to “read” the bar code, its existence has to be first established. To establish its
existence, the bar code has to have a unique feature or characteristic so that it is easily
identifiable. Therefore, the bar code would have to be made of a material that makes it
easily distinguishable from any background material based on the returned intensity
value. A good candidate material would be one that that would return an intensity that
was both much higher than any other material commonly found at a construction site and
that was consistently high for distances of 0 m to 150 m, i.e., intensity did not drop off
with distance. These requirements are essential as the returned intensity is dependent on
several factors – reflectance of object, distance to object, reflectance of the surrounding
objects, lighting (e.g., sunlight, shade), etc. This dependency means that the intensity of
a black object at 10 m could be the same as the intensity of a shaded white object at 50 m
and there would be no way to determine if the object was black or white based solely on
the intensity value.

 For the initial tests, 3M’s Long Distance Performance (LDP) reflective sheeting was
used to construct the bar codes. This material is a highly reflective prismatic lens
sheeting used for traffic signage. This material was chosen as it was readily available,
durable, and would reflect light even if skewed away from the light source.

 The initial experiment was conducted to determine the viability of using the LDP
material to fabricate the bar codes. A photograph of the LDP material and several
magnified images of individual reflective prisms are shown in Figs. 2.2 and 2.3.

Figure 2.2. Photograph of 3M LDP Material.

 9

Figure 2.3a: Magnified Photo of LDP Material: Width represents 6 mm of surface.

Figure 2.3b. Magnified Photo of LDP Material: Width represents 1.5 mm of surface.

 10

2.3 Reflectivity vs Distance Experiment

 The effect on the intensity value as a function of distance was examined by taking
readings at 10 m intervals from 10 m to 150 m. Four targets were created using
aluminum sheets, 508 mm (H) x 406 mm (W) (20 in x 16 in), that were: 1) painted matte
black; 2) painted matte white; 3) left unpainted (shiny silver); and 4) covered with a sheet
of LDP material. In anticipation of the need to read bar codes angled away from the
scanner, the LDP target was rotated to three positions – 0º, 45º, and 60º (Fig. 2.4).

Target rotation = 45º Target rotation = 60º

Angle
of incidence =
target rotation

0º

Scanner ScannerScanner

Laser
Beam

Top View of Set-up

Figure 2.4. Rotation Orientation of LDP Target.

 At each distance, 10 readings were recorded. The plot of the average intensity vs.
distance is shown in Fig. 2.5. As seen in Fig. 2.5, the intensity values for the LDP target
at 0º are consistently high – 200 to 250 over the entire range of the scanner – and are
easily distinguishable from the other targets; thereby making these points easily
distinguishable from the other points in a typical scene. As expected, the intensity values
drop off when the target is turned 45º away from the scanner - the intensity values for the
LDP target at 45º are very similar to those for the shiny silver target at 0º and one could
be mistaken for the other. At an angle of incidence of 60º, the intensity values for a LDP
target would be indistinguishable from values for the white target. However, these
results are encouraging and indicate that the LDP material could potentially be used to
fabricate bar codes or tags that can be read by a LADAR.

 In Fig. 2.5, the intensity values for the black, white, and LDP at 60º targets increase at
distances of 140 m and 150 m, which is contrary to expected. This increase may be
attributed to the contribution of the white wall behind the target at the longer distances;
the wall is located about 160 m from the scanner.

 11

Figure 2.5. Intensity vs. Distance. The Black, White and Silver targets were at 0°.

2.4 Bar Code Patterns

 Once it was determined that the LDP material produced sufficiently high intensity
values and could be used to construct the bar codes, the next step was to determine if a
bar code pattern could be recognized.

2.4.1 Recognizing a Simple Bar Pattern at Close Range

 The first test scanned bars of varying widths, set at a fixed spacing between bars of
76.2 mm (3 in) and a distance to the target of approximately 8.7 m (28.5 ft). Three LDP
bars were attached to a wooden board: 292.1 mm (H) x 152.4 mm (W) (11.5 in x 6 in),
292.1 mm x 76.2 mm (11.5 in x 3 in), and 292.1 mm x 38.1 mm (11.5 in x 1.5 in). Fig.
2.6a shows a photo of the bars and Fig. 2.6b shows a plot of the intensity values. As seen
in Fig. 2.6b, the bar pattern is easily recognizable.

 12

Figure 2.6a: Digital photograph of macro barcode test pattern.
Note that the “glare” from the bars is due to the highly reflective material of the bars.

Figure 2.6b: 2-D plot of LADAR intensity at 8.7 m (28.5 ft).

2.4.2 Distinguishing Bar Patterns at Varying Distances

 The next step was to test the ability to distinguish bar patterns at various distances.
The objective was to determine the minimum size bar and the minimum spacing between
bars required to distinguish the bar patterns at various distances. A series of test scenes
were developed for various patterns and scanned at several distances.

 13

 LDP bars were attached to a white poster board 762 mm (H) x 609.6 mm (W) (30 in x
24 in). Three target boards were used. Each board contained nine bars of the same size–
Board 1: 152 mm (H) x 102 mm (W) (6 in x 4 in) bars; Board 2: 152 mm x 51 mm (6 in
x 2 in) bars; Board 3: 152 mm x 25 mm (6 in x 1 in) bars. The arrangement of the bars
on each board was as follows:

• 3 rows of bars with 76.2 mm (3 in) spacing between the rows
• top row: 3 bars spaced at 76.2 mm (3 in)
• middle row: 3 bars spaced at 50.8 mm (2 in)
• bottom row: 3 bars spaced at 25.4 mm (1 in)

 The original intent was to test the bar patterns at distances of 20 m, 40 m, 60 m, 80 m,
and 100 m (65.6 ft, 131.2 ft, 196.9 ft, 262.5 ft, and 328.1 ft). The images obtained at 60
m (196.9 ft) (Fig. 2.7) showed that the LDP bars were not distinguishable at that distance.
Therefore, scans were taken at shorter distances of 5 m, 10 m, 15 m, 20 m, 40 m and 60
m (16.4 ft, 32.8 ft, 49.2 ft, 65.6 ft, 131.2 ft, and 196.9 ft).

 a. Intensity Image b. Intensity Plot

Figure 2.7. Scan of the 152.4 mm x 102 mm (6 in x 4 in) bars at 60 m (196.9 ft).
Note: Middle row of bars were covered up to get better separation between the top

and bottom rows of bars.

 Three scans were obtained for each board at each distance. Some results are shown in
Figs. 2.8, 2.9 and 2.10. In each of these figures, the (a) figure is a digital photo of the test
board; figures (b), (c), and (d) represent the LADAR intensity image on a scale of 0 to
255 for various test ranges; figures (e), (f), and (g) are plots of the intensity values. In the
intensity images and plots, the blurring at the bar edges is likely caused by an averaging
of the intensity values when the laser beam is split between the bar and the background.

 14

(e) 10 m (f) 20 m (g) 40 m

(a) Photo
(b) 10 m (c) 20 m (d) 40 m

Figure 2.8. 152.4 mm x 25.4 mm (6 in x 1 in) bars at varying distances.

(c) 20 m (d) 40 m (b) 10 m (a) Photo

(e) 10 m (f) 20 m (g) 40 m

Figure 2.9: 152.4 mm x 50.8 mm (6 in x 2 in) bars at varying distances.

 15

(c) 20 m (b) 10 m (a) Photo (d) 40 m

(g) 40 m (f) 20 m (e) 10 m

 Figure 2.10: 152.4 mm x 101.6 mm (6 in x 4 in) bars at varying distances.

Figure 2.11: Raw data acquired by the LADAR for 50.8 mm (2 in.) bar codes at
40 m. Note the need to isolate the bar code images at the far right from the large
amount of background data acquired during the scan.

16

 In a scan, the number of points acquired can vary from several thousand to several
million points. The number of data points is dependent on the desired field-of-view and
desired angular resolution. Thus, the number of points returned from bar codes would be
a very small percentage (< 1%) of the total number of points in a typical scene. The data
from one of the bar pattern experiments are shown in Fig. 2.11. The scan included the
target board and a small region around the board. As seen in Fig. 2.11, the bar code
points can easily be segmented or filtered out from the other background points due to the
high intensity values (> 200) of the bar codes. A histogram of the intensity values, shown
in Fig. 2.12, clearly shows the data segmentation. By filtering the data for points with
intensities greater than 200, a cropped data set of the bar code pattern may be obtained as
shown in figures (e), (f), and (g) for each of Figs. 2.8, 2.9, and 2.10. This method of was
applied to all the data sets. Fig. 2.12 is a histogram of a typical raw data set.

 Figure 2.12. Histogram of Raw Data Set.

 17

2.4.3 MATLAB Bar Code Identification Procedure

 The MATLAB script given in Appendix C.1 employs a simple method to segment the
LADAR data into background and bar data. A histogram technique is used. The
returned intensity signals are binned into 100 intervals. The sample histogram shown in
Fig. 2.12 displays the counts of intensities that fall within the intervals. There are two
dominant modes in the distribution. The lower mode represents the large amount of
background intensity shown in Fig. 2.11, whereas the higher mode represents the bar
code intensities.

 The script assumes the data file generated by the LADAR is in text mode with a file
extension “.txt” and that there are leading header lines that begin with “#”.

 The use of a histogram as a filter of the intensity response offers a significant tool to
isolate the intensity response from the background. The current algorithm filters out all
intensity data less than 200. Further exploration of this idea will have to be based on
more experimental data.

2.4.4 Bar Code Measurement Results

 Two observations about the three dimensional meshing technique of the intensity data
used in this paper can be made. First, the figures show that at distances of 10 m and 20 m
it is possible to isolate reflector bars distanced 76.2 mm (3 in) and 50.8 mm (2 in) apart.
At a separation of 25.4 mm (1 in) discrimination is problematical. A rough estimate of
the separation required at 150 m (492.1 ft) for the current technology would then be 381
mm (15 in). This is based on an extrapolation of 50.8 mm (2 in) at 20 m. A further
enhancement in technology is clearly required in order to reduce this interval.

 The second observation is that using a histogram as a filter of the intensity response
offers a significant tool to isolate the intensity response of the bar codes from the
background. The utility of this tool is highly dependent on having a material with a
unique intensity level. This unique intensity allows for easy data segmentation.

 18

2.5 Beam Property Measurements

 In image processing, the adequacy of the process of reconstructing an image is
enhanced by understanding the entire imaging process and knowing how that process
distorts the intensity measurements. Due to the proprietary nature of the particular device
used for the experiments, a complete knowledge of the optics of the LADAR was nearly
impossible. However, one way to estimate the dispersion of the LADAR beam and its
response from an object was to measure it experimentally. In classic optics the distortion
effects of an instrument can often be modeled based on measurements of bright points of
light that simulate, as close as possible, a delta function. This process in classic optics is
passive in the sense that the optics of the device simply measures the intensity of an
external source. For LADARs, however, the process is more dynamic in the sense that
the LADAR emits a beam that is reflected from an object and then the LADAR picks up
the reflected beam. Thus, in the case of a LADAR there is a beam emitted, whose nature
may or may not be known, there is the reflection from an object and finally there is the
LADAR processing of the reflected beam. This indicates that the LADAR imaging
process is a much more complex process than that of classic optics. For that reason this
section describes the measurements made of a LADAR beam and the imaging of small
round reflectors as an attempt to create delta functions which simulate light pulses
reflected off of a point source. This was used to model the image distortion due LADAR
optics.

2.5.1 Beam Size and Divergence Characteristics

 The data for determining the beam size as a function of distance was obtained as part
of an experiment to determine the range accuracy of the LADAR as a function of the
angle of incidence of the laser beam and distance. An infrared viewer was used to see the
projection of the LADAR on the target so that an outline of the beam could be drawn.
Outlines of the beam were drawn by two or more observers and the measurements were
averaged. The procedure of locating the beam and measuring the dimensions is detailed
in another NIST report [1]. Beam dimensions were obtained for distances ranging from
2 m to 100 m and are shown in Table 2.1.

 The LADAR used for this report consisted of three laser diodes and the projection of
the laser beam on the target was seen as a bright rectangle for distances less than 10 m
and three bright vertical bands separated by dark bands for distances greater than 10 m.
The widths of the bright bands are denoted by “a”, “c”, and “e” and the widths of the dark
bands are denoted by “b” and “d” in Table 2.1. At 10 m, one observer saw bands but the
others perceived only a rectangle.

 19

Table 2.1: Beam Size.

Distance
(m)

L†

(mm)
W†

(mm)
a†

(mm)
b†

(mm)
c†

(mm)
d†

(mm)
e†

(mm)
2 17 41 na na na na na
2 15 45.5 na na na na na
2 15 47 na na na na na
2 17 40 na na na na na
2 14 41 na na na na na
5 19 42 na na na na na
5 25 46 na na na na na
5 18 36 na na na na na
5 19 41 na na na na na

102 31.5 49 15 2 10.5 1.5 20
10 27 51 na na na na na
10 28 48 na na na na na
10 22 46 na na na na na
10 29 58 na na na na na
10 24 53 na na na na na
10 31 62 na na na na na
20 60 68 19.5 8 16 10 14
20 53.5 68 9.5 16.5 14 14 14
20 55 56 9 15 14 11 8
30 86 79 7 21.5 11 29 10
30 79 87 9.5 24.5 15 34.5 3.5
30 74.5 86 16 18 16.5 23.5 12

39.5 117.5 116 11.5 37.5 14.5 37 15.5
39.5 96 111.5 14 35.5 13 29 20
40 115 117 17 26 20.5 31 22
40 101 105 13 24 24 30 14
50 136 159 39 32.5 14 54 19
50 127 146.5 12.5 47 22 43.5 22
60 158 166.5 21 48 23 57 17
60 161 166 24.5 53 18 47 22.5
70 180 194 20 68 25.5 62.5 18
70 166 187 16 71 18 66 16
80 176 183 14 78 18 59 14.5
80 166 207 20.5 53.5 27 84 22.5
80 172 213 19.5 97 17 57.5 22.5
90 186 260 26 115.5 25 72 21
90 254 248 22.5 73 54 61 38
90 230 230 26.5 65 44.5 64.5 29.5
100 182.5 274 25 101 34 84 30
100 234 266 17 120 14.5 101 12.5
100 246.5 263.5 15 99.5 14 122 14
100 284 288.5 21 107.5 24.5 110.5 25

2 Although the other observers saw a single rectangular bright spot, this observer was able to
distinguish bright and dark bands within the rectangular spot.

 20

Distance
(m)

L†

(mm)
W†

(mm)
a†

(mm)
b†

(mm)
c†

(mm)
d†

(mm)
e†

(mm)
Notes:

† Description of Variables. “a”, “c”, and “e” are the widths of the bright bands and “b” and “d” are the widths
of the dark bands.

edba c
W

L

 The lengths and widths of the beam projection are plotted as a function of the distance
in Fig. 2.13. Given the subjectivity when obtaining the beam dimensions, a clear trend is,
nevertheless, visible in Fig. 2.13. The regression fits for width and length are:

smillimeterindimensionlengthwidth,
 100 metersindistance 5

where
9606.0959.6528.20025.0

9874.0815.34664.1007.0
22

22

=
<=<

=++−=

=++=

x

Rxxlength

Rxxwidth

 (2.1)

Figure 2.13: Beam Size vs. Distance.

 21

 Based on the measured beam dimensions, divergences of the beam in the width
(horizontal) and length (vertical) directions were calculated. Since there were no
measurements of the beam size as the beam exits the LADAR, the beam size at 2 m was
taken as the reference or initial beam size when calculating the divergence. The
divergence was calculated using the following formulas (tan γ = γ for small angles):

() (2) () 15.55() 1000
(2) 1000 (2) 1000

() (2) () 43() 1000
(2) 1000 (2) 1000

where
 (), ()

vertical

horizontal

vertical horizontal

L x L L xx
x x

W x W W xx
x x

x x

γ

γ

γ γ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= = ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟− ⋅ − ⋅⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= = ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟− ⋅ − ⋅⎝ ⎠ ⎝ ⎠⎣ ⎦

divergence at distance in milliradians
 () Average length of beam at distance in millimeters
 () Average width of beam at distance in millimeters

x
L x x
W x x

=

=
=

 Distance in metersx =

Figure 2.14. Beam Divergence.

 The average vertical beam divergence is 2.14 mrad (σ = 0.39 mrad) and the average
horizontal beam divergence, excluding the outlier (negative divergence) is 1.86 mrad (σ =

 22

0.44 mrad). The average beam divergence (horizontal and vertical combined) is
2.01 mrad (σ = 0.43 mrad) - compared with the manufacturer’s specified divergence of
3 mrad. The lower experimental value is likely a result of the inability of the unaided
human eye to detect the faint edges of the laser beam projection. A plot of the beam
divergence is shown in Fig. 2.14.

 Plots of the bandwidths of the bright and dark bands are shown in Figs. 2.15 and 2.16.
In Fig. 2.15, the bandwidths for the each individual band are plotted and a trend is visible
for the bright and dark bands. The linear regression fits for individual bandwidths are
given in Table 2.2.

Table 2.2: Coefficients for Linear Regression for Individual Bandwidths.

Description Bandwidth†

(mm)
Slope (M)† Intercept (B)† R2 ‡

Bright Bands
 Left a§ 0.1123 11.198 0.2283
 Middle c§ 0.1842 9.8815 0.2938
 Right e§ 0.1315 10.643 0.2864
Dark Bands
 Left b§ 1.1426 -13.251 0.8954
 Right d§ 0.9815 -6.0425 0.8702
Notes:

† Bandwidth = Mx + B where x = distance in meters; 5 < x < 100
‡ Correlation coefficient squared
§ Corresponds to band widths shown in Notes section of Table 2.1.

Figure 2.15. Individual Band Widths vs Distance.

 23

Fig. 2.16 is a plot with the same data shown in to Fig. 2.15. However, in Fig. 2.16, the
data for the three bright bands were combined and plotted as ‘bright band’ and the data
for the two dark bands were combined and plotted as ‘dark band’. The regression lines
for the bright and dark bandwidths are:

smillimeter in bandwidth
100 10 meters; in distance x

where
257805741014260 bandwidthht Brig

87840646890621 bandwidth Dark
2

2

<<=

=+=

=−=

x

Rx

Rx

...

...

 (2.3)

Figure 2.16. Combined Bright and Dark Band Widths vs. Distance.

2.5.2 Spread Function Measurements by Spot Reflection

 In order to estimate what the beam spread response might look like, a small point of
light had to be simulated. This was done by cutting two sets of circles of the 3M reflector
sheet and placing them on a black background. Two diameters of circles were cut, the
first being 6.3 mm (1/4 in) and the second 12.7 mm (1/2 in). Three columns of each set

 24

of “dots” were placed on two black metallic backgrounds. The dots were placed about
304.8 mm (12 in) vertically apart with the first and third colums aligned horizontally and
the middle column starting 152.4 mm (6 in) below the start of the first and the third.
This gave the effect of dots alternating by column every 152.4 mm (6 in).

Figure 2.17: LADAR images at 10 m of 6.3 mm (1/4 in) spots in the left three columns and

12.7 mm (1/2 in) spots in the right columns.

 25

 One characterstic to notice of the spots in Fig. 2.17 is that there is a definite horizontal
broadening of the spot images as opposed to a vertical broadening. In fact there is
roughly a 2 to 1 aspect ratio of horizontal to vertical spread in the spot data. This aspect
ratio is also evident at 20 m (Fig. 2.18). At 40 m the spots flowed together and they
could not be distinguished (Fig. 2.19).

2.5.3 Summary of Beam Property Measurements

 Being able to reconstruct a ground truth image from a distorted image depends
strongly on knowledge of the optical processes involved. As opposed to photography,
which is a passive process, in that it gathers light that is reflected from an object, a
LADAR is active in that it projects a beam at a target object and then gathers in the
reflected photons. Therefore, to understand a LADAR’s image, one needs to have
knowledge of the beam emitted by the LADAR as well as how the LADAR optics
distorts the photon beam reflected from each point of the target image.

 The LADAR used in this study produced a beam of photons that split into three light
bands with two dark bands between.The beam size grew nearly linearly to about 250 mm
in length and width at 100 m distant. The predominant growth in the beam size was
accounted for by the near linear growth in the dark bands, whereas the light band widths
remained nearly constant in size.

 The distortion affect of a camera’s optics on light reflected from an image is usually
measured by taking a picture of a small bright spot on a black background. In the case of
the LADAR a bright spot was simulated by a small spot of highly reflective material
against a black background. The measurements for the given LADAR showed that the
distortion need not be uniform in all directions. In fact, for the LADAR used, the
distortion tended to spread the image horizontally more than vertically (Fig. 2.17, 2.18)
and at 40 m the reflections from the spots were so distorted that no spots in the image
could be identified (Fig. 2.19).

26

Figure 2.18. LADAR images at 20 m of 6.3 mm (1/4 in) spots in the
left three columns and 12.7 mm (1/2 in) spots in the right columns.

 27

Figure 2.19. LADAR images at 40 m of 6.3 mm (1/4 in) spots in
the left three columns and 12.7 mm (1/2 in) spots in the right.
28

3.0 Image Blurring Fundamentals

 Image processing methods have been successful when applied to blurred photographic
images. They have also been successful in medical imaging. The intent of the current
study was to determine to what extent image processing techniques, applied to LADAR
image reconstruction problems, would be successful.

 For the purpose of modeling, the LADAR beam is assumed made up of a stream of
photons. The beam is aimed at a target point on the ground truth image. The value that
the LADAR assigns to that point is the result of an averaging process of the reflections of
the LADAR beam from points in a neighborhood of the target point as shown in Fig. 3.1.
This averaging process can be given a mathematical description beginning with a
discussion of a light pulse.

 A br
two-dim
represe
This is
a mann

and

Ground TruthDistorted or Blurred Image

Value at image is
weighted average
of neighboring points
in the ground truth image

x

yz

Ground TruthDistorted or Blurred Image

Value at image is
weighted average
of neighboring points
in the ground truth image

x

yz

Figure 3.1. A schematic showing how an image point is assigned as a
result of the blurring process that occurs after a LADAR beam is
reflected.
ight minute source of light in a dark background is essentially a highly localized,
ensional, spatial pulse, representing a spike of irradiance. A convenient idealized

ntation of this sort of sharply peaked stimulus is the Dirac delta function, δ(y).
 a quantity that is zero everywhere except at the origin, where it goes to infinity in
er so as to encompass a unit area, that is

0 0
()

0
y

y
y

δ
≠⎧

= ⎨∞ =⎩
 (3.1)

() 1.y dyδ
∞

−∞

=∫ (3.2)

29

The basic operation of the delta function is called the sifting property and is given by

() () (0).f y y dy fδ
∞

−∞

=∫ (3.3)

That is the delta function extracts the one value of f(x) at x = 0. With a shift of the origin
we have

0
0

0

0
()

y y
y y

y y
δ

≠⎧
− = ⎨∞ =⎩

 (3.4)

and

0() () ().0f y y y dy f yδ
∞

−∞

− =∫ (3.5)

In two dimensions one has

0 0 0(,) () () (,).0f y z y y z z dxdy f y zδ δ
∞ ∞

−∞ −∞

− − =∫ ∫ (3.6)

 The LADAR can be thought of as an optical system that takes reflected data from
points on a plane, sometimes called a target plane, that are described by coordinates
(,)y z where the positive y coordinate axis points to the right and the positive z
coordinate axis points downward. The x coordinate is always assumed to point in the
direction of the target. This axis configuration preserves the right-hand rule. The
LADAR then produces an image, often blurred in some manner, on a plane, usually
called the object plane, defined by coordinates (, that are set in a one-to-one
mapping with the (,

)Y Z
)y z coordinates in the target plane.

 Without knowing the physical and optical processes associated with the production of
a LADAR image, a preliminary assumption to make is that it is a linear process. This can
be defined as follows. Suppose that an input signal f(y,z) passes through some optical
system and results in an output g(Y,Z). The system is linear if

1. the input af(y,z) produces the output ag(Y,Z) and
2. given that input produces and produces then

 produces
),(1 zyf),(1 ZYg),(2 zyf),(2 ZYg

),(),(21 zybfzyaf +),(),(21 ZYbgZYag +

where a and b are any scalars.

 30

 A linear system will be space invariant if changing the position of the input from the
target plane merely changes the location of the output in the object plane without altering
its functional form. Thus the output produced by an optical system can be treated as a
linear superposition of the outputs arising from each of the individual points on the target
object. The impulse response will be designated by (,)H Y y Z z− − . Our model of
LADAR imaging can then be written as

(,) (,) (,) .g Y Z f y z H Y y Z z dydz
∞ ∞

−∞ −∞

= − −∫ ∫ (3.7)

 The restoration problem involves estimating the function f(y,z) given a measured
g(Y,Z). Finally there is also typically random noise degradation. In the presence of
additive noise degradation the convolution restoration model can be written as

(,) (,) (,) (,)g Y Z f y z H Y y Z z dydz n Y Z
∞ ∞

−∞ −∞

= − − +∫ ∫ (3.8)

 Equation (3.8) is a special case of a class of ill-posed problems. In order to explain the
ill-posedness of the general superposition equation

(,) (,) (, ; ,)g Y Z f y z H y z Y Z dydz
∞ ∞

−∞ −∞

= ∫ ∫ (3.9)

we consider two problems. The first shows that the same blurred image can be produced
even though the ground truth image is perturbed by high frequency noise. The second
shows that small noise perturbations of the blurred image can result from large
perturbations of the ground truth image.

 First consider the following one-dimensional problem. Let f(s) = 0 for [-a,a] and
then

∉s

() () (,) () (,)
a

a

g y f s H s y ds f s H s y ds
∞

−∞ −

= =∫ ∫ (3.10)

The Riemann-Lebesgue Theorem states that

lim sin() (,) 0
a

a

s H s y ds
ω

ω
→∞

−

=∫ . (3.11)

Then

() lim [() sin()] (,) .
a

a

g y f s s H s y ds
ω

ω
→∞

−

= +∫ (3.12)

 31

The restoration problem can be stated as given g(y) and H(s, y) determine f(s). However,
since a high-frequency sinusoid can be added to f(s) and produce data very close to g(y),
a unique solution cannot in general be expected. Other techniques have to employed.

 For the second problem we begin by defining

1 1/
() .

0 otherwise
y

k y
⎧ ≤

= ⎨
⎩

2
 (3.13)

Then define

() ()n y nk nyδ = (3.14)

and note that

() 1.n y dyδ
∞

−∞

=∫ (3.15)

Let ()H y be a bounded continuous function defined on the real line. Then for any
integer n > 0 we can use the Mean Value Theorem for integrals to show

1/(2) 1/(2)

1/(2) 1/(2)

() () () () ()
n Y n

n
n Y n

y H Y y dy n H Y y dy n H u du Hδ ξ
+∞

−∞ − −

− = − = =∫ ∫ ∫ (3.16)

for some , 1/(2) 1/(2Y n Y).nξ ξ− < < + Now let

() () () .g Y f y H Y y dx
∞

−∞

= −∫ (3.17)

Then

{ }() () () () () () ()

() ()

n nf y y H Y y dy f y H Y y dy y H Y y dy

g Y H

εδ εδ

ε ξ

∞ ∞ ∞

−∞ −∞ −∞

+ − = − + −

= +

∫ ∫ ∫ (3.18)\

for some , 1/(2) 1/(2Y n Y).nξ ξ− < < + For small ε the right hand side of (3.18) is a
small perturbation of the blurred image ()g Y since H(y) is bounded. But the perturbation
of f(y) can be made arbitrarily large by selecting a sufficiently large n.

 32

 Both of these examples show how ill conditioned the image reconstruction problem
can become. For this reason care must be taken when developing an image
reconstruction algorithm.

 Before an algorithm can be described we need to discretize the associated integrals. In
general Equation (3.7) is never directly evaluated since the intensity values (,)f y z are
possibly known only at discrete points. To discretize the ground truth or target image
define nf discrete values on the y-axis directed to the right and nf equally spaced discrete
values on the z directed vertically downward so that

1 2

1 2

1 1

0 1

0 1

, ,
.

nf

nf

i i i i i i

i i

y y y

z z z

y y y z z z
y z

+ +

= < < < =

= < < < =

∆ = − ∆ = −
∆ = ∆ = ∆

,

,

j

 (3.19)

 The unit size is set to one in order to represent a one meter square background to the
bar codes used in the experiments. The intensity at the patch identified by the
coordinates (,)i jy z is modeled as

* *(,)i j if y z y z∆ ∆ (3.20)

where f is a function expressing the intensity response at some point in the patch. Due to
distortions, the LADAR image of the response from the bar code surface is smeared out
into some form of blurred spot.

 The grid for the distorted image is taken as a subset (to be defined below) of the grid
for the ground truth image for the purpose of discretization; see Fig. 3.2. Points in the
distorted image will be identified by (Y, Z) and those in the ground truth image by (y, z).
These are simply different notations for points in the same axis system.

 The distortion at a point (Y, Z) in the object plane, due to a point (y,z) in the target
plane, is described by the function (, ; ,)H y z Y Z , called here the Beam Spread Function,
although in standard image processing it would be called a point spread function. For
most practical purposes the Beam Spread Function can be considered spatially invariant
in the sense that its distortion value only depends on the distance between (Y, Z) and (y, z)
so that H has the form H(Y-y, Z-z) as given in Equation (3.7). The incremental distortion
effect at (Y, Z) due to a neighboring patch of (y,z) is then

(,) (,) (,) .g Y Z f y z H Y y Z z y z∆ = − − ∆ ∆ (3.21)

 To describe the total effect g(Y, Z) of all of the points (y, z) in the ground truth image
one sums over all of the patches in the ground truth image

 33

1 1
* * * *

1 1
(,) (,) (,) .

nf nf

i j i j i j
i j

g Y Z f y z H Y y Z z y z
− −

= =

= − −∑∑ ∆ ∆ (3.22)

This is the discrete form of Equation (3.7), because as the number of grid points nf in the
ground truth image grows and the patch size tends to 0, the sum can be replaced by the
integral (3.7). This integral is called a convolution integral.

Figure 3.
and the
between.

Ground Truth Image

Distorted Image

(Y,Z)

(y,z)

g(Y, Z)

f(y, z)

H(Y-y, Z-z)

2. This shows the relation of the distorted image to the ground truth image
fact that the Beam Spread Function only depends on relative distances
points.
34

4.0 Numerical Image Reconstruction Procedures

 In order to be in a form suitable for computer processing, an image function f(y, z)
must be digitized both spatially and in amplitude. Digitization of the spatial coordinates
(y, z) will be referred to as image sampling, while amplitude digitization will be called
gray-level quantization.

 Suppose that a continuous image f(y, z) is approximated by equally-spaced samples
arranged in the form of an nf x nf array as shown by

(1,1) (1, 2) (1,)
(2,1) (2, 2) (2,)

(,)

(,1) (, 2) (,)

f f f nf
f f f

f y z
nf

f nf f nf f nf nf

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.1)

where each element of the array is a discrete quantity. The right side of this equation
represents what is commonly called a digital image, while each element of the array is
referred to as an image element, picture element, pixel, or pel.

 The digitization process requires that a decision be made on a value for nf as well as on
the number of discrete gray levels allowed for each pixel. It is assumed here that m
discrete levels are equally spaced between 0 and 255. The resolution (i.e. the degree of
discernable detail) of an image is strongly dependent on both nf and m. The more these
parameters are increased, the closer the digitized array will approximate the original
image. But computer storage and processing requirements increase rapidly as a function
of nf and m. When an image of lower resolution, such as 16 x 16, is displayed at a higher
resolution, of say 512 x 512, pixels are each duplicated leading to a display that has a
checkerboard-like effect in the graphics display.

 Assume that the ground truth image is given as a matrix (,)i jf y z (,)f i j of size nf x
nf at points

1 2

1 2

0 1

0 1
nf

nf

y y y

z z z

= < < < =

= < < < =

,
 (4.2)

and the beam spread function is given as a matrix H(m,n) of size ma x ma, ma < nf, where
m= 1, …, ma, n= 1, …, ma, with H(1, 1) the upper left corner and H(ma, ma) the lower
right. H has the same grid size as f.

 The convolution is a process in which beam spread function, as a matrix of weights, is
sequentially moved across the ground truth matrix. A weighted average of the ground
truth points under the beam spread matrix is computed and the averaged value is assigned

 35

to a point under the center of the beam matrix. The distorted image is a function g(Yp, Zq)
represented by a matrix g(p,q) of size ng x ng where nf and ng are related by nf = ng + ma
– 1; see Fig. 4.1. Note that ma must be taken as an odd integer.

nf

ng

ma
(ma-1)/2

X
nf

nf

ng

ma
(ma-1)/2

X
nf

Figure 4.1. This shows the relationship of the Ground Truth image of size nf x nf to the
distorted image of size ng x ng, where nf = ng + ma – 1, where the discrete model of the
LADAR beam has size ma x ma. The point X represents the pixel in the distorted image at
which the convolution of the beam with the Ground Truth is assigned.

 The spatial coordinates for the distorted image are defined as follows. Let p, q = 1, …,
ng then set

(1)

(1)
p

q

Y p

Z q

,

.

= − ∆

= − ∆
 (4.3)

Similarly, the spatial coordinates of the ground truth image are defined as follows. Let i,
j = 1, …, nf then set

(1) ,
(1)

i

j

y i
z j .
= − ∆
= − ∆

 (4.4)

Now we can define the indexed array for the beam spread function in terms of special
coordinates. Although H will be used to designate an indexed array, it will also be used as
the related function of coordinates. For m, n = 1, …, ma let

 36

(,) (,)L m nH m n H u w= (4.5)

where designates the value of the matrix H at the local coordinates LH

((2 1) / 2) ,
((2 1) / 2) .

m

n

u m ma
w n ma

= − −
= − − ∆

∆

.∆

2,
2.

 (4.6)

 um and wn are local coordinates of H relative to the center of the beam spread function.
For example,

(1,1) (((1) / 2) , ((1) / 2)),
((1) / 2, (1) / 2) (0,0),
(,) (((1) / 2) , ((1) / 2))

L

L

L

H H ma ma
H ma ma H
H ma ma H ma ma

= − − ∆ − − ∆
+ + =

= − ∆ −
 (4.7)

A point (Yp, Zq) in the distorted image is linked to a point (yi, zj) by

(1) /
(1) /

i p ma
j q ma
= + −
= + −

 (4.8)

For example,

(1) / 2 ((1) / 2 1) .p i p maY y y p ma+ −= = = + − − ∆ (4.9)

Therefore, given any p, i, q, j,

((1) / 2)

((1) / 2
p i

q j

Y y p i ma

Z z q j ma

− = − + − ∆

− = − + − ∆

,

) .
 (4.10)

 Since H(u,w) is nonzero for (u,w) in [-((ma-1)/2)∆, ((ma-1)/2)∆] x [-((ma-1)/2) ∆,
((ma-1)/2)∆] and 0 elsewhere, the discrete convolution integral becomes

1 1

(,) (,) (,). (4.11)
q ma p ma

p q p i q j i j
j q i p

g Y Z H Y y Z z f y z
+ − + −

= =

= − −∑ ∑

Summation is first taken down y then z. The ∆ factor has been subsumed into the
definition of H for computational ease. Note that, if the beam spread matrix is sitting
with its center at (Yp, Zq), the upper left point is sitting at (yp, zq). At point (Yp, Zq) of the
distorted image, the sum looks like

 37

(,) (,) (,) (1,) (1,) (1,) (1,)
(, 1) (, 1) (1, 1) (1, 1) (4.12)

(1,1) (1, 1).

g p q H ma ma f p q H ma ma f p q H ma f p ma q
H ma ma f p q H ma f p ma ma

H f p ma q ma

= + − + + + +
+ − + + + − + − −
+ + + − + −

−

Since the ground truth image F is larger than the distorted image G, there are more
degrees-of-freedom involved in reconstructing F from a measured G. A computable
approach is to determine F in a least squares manner to satisfy

2min . (4.13)
F

HF G−

This is an ill-posed problem since there can be multiple solutions. A penalty term can be
added to this minimization problem that puts a premium on the size of F selected.
Introduce λ > 0 and form the following minimization problem

{ }2 2min . (4.14)
F

HF G Fλ− +

The second term is called a regularization term and its function is to control the
magnitude of the final F. In practice λ is selected as a small positive number.

 At this point we discuss an iterative least squares algorithm by Paige and Saunders [8]
called LSQR. Although this has been discussed in [7] many of the details involved with
the implementation in code may not be familiar to some readers of the current report.
Therefore the details are included in APPENDIX B. Only the general outline will be
given here. A Fortran 77 code is available in zip compressed form on the web as ACM
Algorithm 583 from http://www.acm.org/calgo/contents/.

 One begins with a fundamental result from Golub and Kahan [5]. Let H be any m x n
matrix with real elements. The original result allowed complex elements but only real
values will be used here. The matrix H can be decomposed as

TH U B V= (4.15)

where U and V are orthogonal matrices and the first column of U is arbitrary. That is,

 B is a bidiagonal matrix of the form ., IVVVVIUUUU TTTT ====

 38

http://www.acm.org/calgo/contents/

1

2 2

0 0
0

.0
0 0

0 0

n nB

α
β α

0

0

β α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

T

 (4.16)

Using the orthogonality property of U and V it is clear that

,
,T

HV UB
H U VB

=

=
 (4.17)

where

1 2

2

0 0 0
0

0 0
0 0 0

T

n

n

B

α β
α

β
α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦0

 (4.18)

 The previous decompositions will become useful in the solution of the following least
squares problem

2min .
f

Hf g− (4.19)

If orthogonal matrices U and V are found that satisfy the above conditions then this least
squares problem can be reduced to a simpler form. By orthogonality we always have

zUz T= so that

()T T T T .T (4.20) Hf g UBV f g U UBV f g BV f U g− = − = − = −

Let the columns of U be denoted by

[]1 2, , , mU u u u= . (4.21)

Since the first column of U is arbitray, we can set

1 .gu
g

= (4.22)

 39

Then since U is orthogonal

11

2
1

1
0 0

0 0

T

T
T

T
m

u g
u g

U g e

u g

β

1 1β β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (4.23)

where, for notation, is the vector of all zeroes with one in the kke th element and

1 gβ = . With this notation one has

1 1Hf g By eβ− = − (4.24)

where . Thus the previous least squares problem can be reduced to the new
minimization problem

Ty V f=

11min eBy

y
β− . (4.25)

 The regularization term can be introduced by solving the minimization problem

1 1min
0y

B e
y

I
β

λ
⎡ ⎤ ⎡ ⎤

−⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. (4.26)

 The algorithm of Paige and Saunders [7] proceeds iteratively so that after k+1 steps
one has generated

[]
[]

1

1 1 2 1

1 1 2 1

1

2 2

3 3

1

,

, , , ,

, , , ,

.

k k

k k

k

k

k

g

U u u u

V v v v

B

β

α
β α

β α

α
β

+ +

+ +

+

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.27)

 40

The kth approximation to the solution f is defined by k k kf V y= where solves the kky th
iteration problem

1 1min .
0k

k
ky

B e
y

I
β

λ
⎡ ⎤ ⎡ ⎤

−⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (4.28)

If we define the following residuals

1 1k

k k

t e B
r g Hf

k kyβ+ = −
= −

 (4.29)

then Paige and Saunders [7] show that the relations

1 1
2

1 1

k k k
T

k k k k

r U t

H r f vλ α τ
+ +

1k+ + +

=

= +
 (4.30)

hold to machine accuracy. In the second equation 1kτ + represents the last component of

[]1 1 2 1, , , T
kt τ τ τ+ = k+ . They also show that (),k kr f are acceptable solutions of

min
0f

H g
f

Iλ
⎡ ⎤ ⎡ ⎤

−⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (4.31)

if the values of 1kt + or 1 1k kα τ+ + are sufficiently small.

 41

5.0 Computational Results

 Before deconvolution was applied to the original measured bar code images, a
simulation was developed in order to better understand the data distortion brought about
by the convolution process. These computations required several stages. First, the targets
or ground truth images had to be created. There were three of those. Second, the
individual beam matrices had to be generated for simulated probing of the target at 10 m,
20 m and 40 m. Next the target images, originally defined as matrices, had to be
converted to vector form and the beam matrices had to be put into a form to use as
convolution kernels. Next the target images were blurred by computing the convolutions.
Finally a least squares deconvolution process was applied to the blurred images to
retrieve the original images. The first two subsections describe creating the simulated
ground truth data and the simulated blurred bar code images. The third subsection
describes the experience with deconvolving the measured bar code images using various
Beam Spread Functions.

5.1 Creating Simulated Ground Truth Bar Code Data

 Determining the ground truth version of an image obtained by a LADAR is a nontrivial
task. One solution is to declare, in the case of the bar code images, that an image
acquired at say 5 m would be considered ground truth. Another might be to take a
photograph of the bar code display and scale, if possible, the photograph’s spatial and
intensity values to approximately those of a LADAR image taken at the same distance.
However, in all of these cases, the data would be affected by the blurring nature of the
data acquisition device. One could agree that at certain distances these effects would be
considered minimal. Another approach, however, and the one taken in this report, is to
build simulated bar code data sets using the distribution of the intensities from acquired
LADAR data. This approach allows one to create properly sized ground truth data sets,
depending on the values of the mesh size of the acquired data (ng) and the matrix size of
the beam spread function being evaluated (ma), since the number of grid points in the
ground truth data set is related to these two quantities.

 A MATLAB script for the simulated ground truth bars is given in Appendix C2. It
generates three sets of simulated bar codes depending on bar widths. The specifications
for these bar code configurations are based upon the experimental bar code artifacts.
Each set of bar codes consists of three rows of bars, each of height 0.1524 m (6 in). The
rows are separated by 0.0762 m (3 in). The axes are taken so that the Z-axis is directed
downwards, the Y-axis toward the right and the X-axis pointed forward. The origin of the
axis system is taken as the center of the middle bar of the middle row. The rows are
numbered 1 to 3 starting with the lower row. The individual bars are numbered left to
right beginning with the lower row as 1, 2, 3. The second row, left to right, is 4, 5, 6.
Finally the upper row, left to right is 7, 8, 9. The distances between bars in the lower first
row is 0.0254 m (1 in), between bars in the second row is 0.0508 m (2 in), and finally in

 42

the third row the distance is 0.1016 m (4 in). Each of the three sets of bar codes has the
same height. The three widths are 0.1016 m (4 in), 0.0508 (2 in) and 0.0254 m (1 in).

 Figures 5.1 – 5.3 show the three simulated ground truth data sets.

Figure 5.1. Simulated 0.0254 m (1 in) Bar Codes.

43

Figure 5.2. Simulated 0.0508 m (2 in) Bar Codes.

Fig. 5.4 shows the simulated 0.1016 m (4 in) bar configuration with Gaussian noise
added. The colors in all of the figures are set by the default MATLAB color table.

Figure 5.3. Simulated 0.1016 m (4 in) Bar Codes.

Figure 5.4. A 3D plot of the simulated 0.1016 m (4 in) bar configuration. It
shows the slight variability of the data around the mean.

 44

5.2 Creating Simulated Distorted Bar Code Images

 The first computation performed was to use the simulated ground truth data sets and
several models of the beam spread functions to generate blurred images. This involved a
straightforward convolution calculation where the simulated bar code images played the
part of the F function and the blurring models played the part of the H function.

5.2.1 Simulated Three Beam Model

 Based upon the measurements of the LADAR beam described in Section 2, three
models of the beam were constructed with one each for 10 m, 20 m and 40 m. For 10 m
a single averaging filter was created and for 20 m and 40 m two beam models were
constructed of three vertical averaging filters each. All of the beam models were defined
in terms of discrete points with grid spacing the same as the grid spacing of the ground
truth data sets. Each of the discretized beams was specified in terms of a square array.
The 10 m discretized beam was taken as a 15 x 15 array, the 20 m discretized beam was a
17 x 17 array and the 40 m discretized beam was a 29 x 29 array. Each of the mesh
spacings was taken as approximately 3 mm, which was the mesh spacing of the simulated
ground truth data. For all practical purposes, it was assumed that the beam model meshes
and the ground truth meshes were identical.

 For the 10 m beam model, a subset of the 15 x 15 grid was selected. Nonzero values
were assigned to a subgrid of 8 vertical points by 15 horizontal points that fell across the
middle of the 15 x 15 grid. This subgrid simulated the approximate 27 mm x 55 mm
beam at 10 m and comprised 120 points. The nonzero value assigned to each subgrid
point was 1/120 so that the beam model would act like an averaging filter in the
convolution process.

 The 20 m and 40 m beam models were each made up of three submatrix averaging
filters to simulate the split beams as described in Section 2. For the 20 m model, the grid
spacing was divided so that there were three 15 x 4 nonzero subgrids, far left, middle, and
far right, separated by two approximately equal zero subgids. Since there were 180
nonzero grid points, 1/180 was assigned to each point. For the 40 m model three nonzero
subgrids were selected, a 29 x 5 to the far left, a 29 x 7 in the middle and a 29 x 5 to the
far right with zero assigned elsewhere. Since there were 493 nonzero grid points a value
of 1/493 was assigned to each of them.

5.2.2 Simulated Blurred Bar Codes

 In this section we show the results of using the three simulated beam models as
convolution kernels applied to the simulated ground truth bar codes. The blurred images
were compared with the actual measured bar code images. This comparison is shown in
Figure 5.5 for the 0.0254 m (1 in) bars, in Figure 5.6 for the 0.0508 m (2 in) bars, and in
Figure 5.7 for the 0.1016 m (4 in) bars.

 45

Figure 5.5
20 m and

Actual Bar Images
Simulated Blurring
. Comparison of Simulated Blurring of 0.0254 m (1 in) Bar Codes at 10 m,
40 m with measured Bar Codes.

46

Figure 5.6. Comparison of Simulated Blurring of 0.
and 40 m with measured Bar Codes.

 47
050
8 m

Simulated Blurring
 (2 in
Actual Bar Images
) Bar Codes at 10 m, 20 m

Simulated Blurring

48
Actual Bar Images

Figure 5.7. Comparison of Simulated Blurring of 0.1016 m (4 in) Bar Codes at 10 m,
20 m and 40 m with measured Bar Codes.

 The first observation that can be made about the differences of the simulated blurred
LADAR images and the measured LADAR images is that the measured images appear
broader horizontally than the simulated images. Due to the convolution integral the
simulated blurring process is only a local averaging. The figure does show that the beam
model does average together portions of neighboring bars. This also appears to happen
with the measured data, but the measured data appears to be broader horizontally. This
suggests that there are nonlinear components to the LADAR data acquisition process in
addition to local averaging. Some simple measurements of the blurred data at 10 m
indicated that the 0.0254 m (1 in) bar measured data spread horizontally to approximately
0.07112 m (2.8 in) whereas vertically they did not spread beyond 0.1524 m (6 in). The
0.0508 m (2 in) bars expanded horizontally to approximately 0.1016 m (4 in) and the
0.1016 m (4 in) bars expanded to approximately 0.1524 m (6 in). Again no appreciable
vertical expansion was noted. This clearly indicated that a more complex model than the
linear deconvolution model would probably be required to do a complete deconvolution.

 Next we can examine the groupings by bar size. For the 0.0254 m (1 in) bars the
simulated averaging filter at 10 m tends to produce peaks in the lower bars in the middle
between the two bars. This is a known phenomenon in imaging. An averaging filter that
overlaps two objects separated by a low intensity region will produce a peak between the
two objects. This phenomenon does not appear in the measured image. Thus the effect of
the beam on the bar code artifacts involves more than averaging. How the photons are
reflected and processed by the LADAR is an open question that requires specialized
metrology devices not currently available. At 20 m and 40 m, the multiple beam models
do seem to produce simulated blurred results that have some relation to the measured
data. Again all of the measured data show a horizontal broadening effect.

 For the 0.0508 m (2 in) simulated bars, the blurring again produces sharper edged
results than the measured responses. We should note that at 40 m the simulated and
measured results seem to have similar peaks suggesting again that the split beam model is
likely to be a candidate portion of the true blurring process. At 20 m however the split
beam model does not appear to produce the correct peak locations. This is also reflected
in the 0.1015 m (4 in) bar images, whereas the 10 m and 40 m results seem to be related.

 All of these results indicate that the beam models selected are weak approximations of
the true imaging process. However, until both a more theoretical analysis of the LADAR
imaging process and more detailed metrology devices are available for the study of
LADARs, we have to depend on the approximate models. These approximate models will
reveal below the extent to which ground truth can be recovered from the measured
images of the bar code artifacts.

5.3 Ground Truth Reconstruction Using Various Beam Spread
Functions

 In this section we cover the results obtained through reconstruction or deconvolution
calculations using two classes of beam spread functions. The first set is based on the

 49

beam spread functions used in the previous section to simulate blurred bar codes. The
second set is based on beam spread functions created from the measured spot data.

5.3.1 Reconstruction Using Averaging Filters

 Figure 5.8 shows the possibility of deconvolving the blurred 0.0254 m (1 in) and
0.0508 m (2 in) bars at 10 m. In both cases the simple solid averaging filter was used. As
can be seen, the lower group of three bars has been separated to the point that they could
be identified.

 T
Sec
to t
for
ave
pot
the
Th
cen
the
5.1
num
see
ver
be
filt
dec
to
dec
ma
tho
rati

Figure 5.8. Reconstruction by a 15 x 15 Averag
Bar Codes at 10 m for the 0.0254 m (1 in) and 0

hese reconstructions were developed using the
tion 5.2.1. However, the reconstructions of differ
he size of the filter. Figs. 5.9 and 5.10 show the r
 the 0.0254 m (1 in) and 0.0508 (2 in) bars at 10
raging filters. Several filter forms were experim
ential characteristics of optimum deconvolution fi
 results of several averaging filters applied to rec
e filters were constructed from an 11 x 11 base
tered about the middle of the 11 x 11 filter, were
 rest of the filter was set to zero. These are calle
0. It is clear that thinner filters, in the sense of f

ber of columns provide better deconvolution filte
m appropriate since the LADAR used spread im
tically. One would expect that a filter with a heigh
a reasonable selection. Figure 5.10 shows the resu
ers to the 0.0508 m (2 in) measured bar data. N
onvolving these images. The conclusion that could
reconstruct the 0.0254 m (1 in) bar code imag
onvolve the 0.0508 m (2 in) bars at 10 m. That is
y not deconvolve another of similar form but of d
ugh Fig. 5.10 shows the lack of reconstruction it a
o increases the reconstruction becomes worse. Thi

50
ing Filter of the Measured
.0508 (2 in) Bars.

averaging filter at 10 m defined in
ent bar code sizes are very sensitive
esults of reconstruction calculations
 m based on 11 row by 11 column
ented with in order to determine

lters for these cases. Fig. 5.9 shows
onstruct 0.0254 m (1 in) bar codes.
 filter in which only a few rows,
 set to non-zero values while all of
d submatrix filters in Figs. 5.9 and
ewer non-zero rows, relative to the
rs for the cases studied. This would
ages more horizontally rather than
t to width ratio less than one would

lts of applying the same sequence of
one of the filters was successful in
 be drawn here was that filters used
es at 10 m could not be used to
, a filter that deconvolves one image
ifferent sized image objects. Even

lso shows that as the height to width
s no doubt reflects the fact that the

1 x 11 submatrix filter

3 x 11 submatix filter

7 x 11 submatrix filter

9 x 11 submatrix filter

5 x 11 submatrix filter

11 x 11 submatrix filter

 Figure 5.9. This figure shows the effect of applying different sized filters to

reconstructing 0.0254 m (1 in.) bar codes.

 51

1 x 11 submatrix filter

5 x 11 submatrix filter

9 x 11 submatrix filter

Figure 5.10. This figure shows the effect of applying
reconstructing 0.0508 m (2 in.) bar codes.

 52
3 x 11 submatrix filter

7 x 11 submatrix filter

11 x 11 submatrix filter

different sized filters to

LADAR spreads data more horizontally than vertically. Figs. 5.9 and 5.10 were created
after 10 iterations of the deconvolution algorithm. More iterations did not necessarily
create a better reconstructed image. This will be shown in a figure below.

5.3.2 Reconstruction Using Filters Based on Spot Reflections

 The data used to develop the beam spread functions used for these calculations was
described in Section 2.5.2. Fig. 5.11 shows a sample distribution of the spread function
model for the 0.00635 m (1/4 in) spot data. A similar distribution was developed for the
0.0127 m (1/2 in) spot data. Both were developed from data acquired at 10 m. As Figs.
5.12 and 5.13 show, the filters constructed based on the spot data did not produce
successful bar code reconstructions at 10 m. The reconstruction using the smaller
reflection point data appears more successful than that for the larger spot data.
Furthermore, as shown in Fig. 5.12, a 3 x 11 element matrix filter produced the best
results. Thus the 11 x 11 matrix with a submatrix of 3 non-zero rows from the 0.00635 m
(1/4 in) spot data produced somewhat better results than did a submatrix with the full 11
non-zero rows.

1 3 5 7 9

11 13 15 17

S1

S6

S11

S16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9-1
0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0-0.1

Figure 5.11. Sample plot of the data distribution from a 0.00635 m
(1/4 in.) spot at 10 m.
53

3 x 11 submatrix filter

5 x 11 submatrix filter

7 x 11 submatrix filter

9 x 11 submatrix filter

Figure 5.12. Reconstruction results of 0.0508 m (2 in) bar codes at 10 m using filters based on
data from 0.00635 m (1/4 in.) reflected spot data.

11 x 11 submatrix filter

 54

Figure 5.13. Reconstruction of 0.0508 m (2 in) bars with data from 0.0127 m (1/2 in)

spot data using an 11 x 11 submatrix filter.

5.3.3 Convergence Aspects of the Reconstruction Process

 When the deconvolution algorithm converged to a solution, it did so in only a few
iterations. Allowing the algorithm to proceed for more iterations tended to degrade the
solution image. This is demonstrated in Figs. 5.14 and 5.15.

 Figure 5.14 shows the progress of the deconvolution process on the measured
0.0254 m (1 in) bars at 10 m. The figure shows iterations 1, 2, 5, 6, 9 and 10. The lower
three bars are beginning to be reconstructed by iterations 5 and 6 and are essentially
recovered by iteration 10. This was the general experience of applying the Paige and
Saunders algorithm. That is, when there is convergence, it occurs rapidly. These results
were achieved using the flat filter.

 Figure 5.15 shows the results of allowing the algorithm to proceed to 100 iterations
using the 0.00635 m (1/4 in) spot data. The result can be compared with Fig. 5.12 to
show that adding more iterations tends to degrade results. Possible reasons for this
degradation the accumulation of round off and increased oscillation in the solution image.
This can be observed in Fig. 5.14. Note that as the iteration progresses more surface
oscillations become visible.

 55

Iteration 1 for 0.0254 m (1 in) bars

Iteration 5 for 0.0254 m (1 in)
bars

Figure 5.14. This figure shows sample iteration results of t
used to deconvolve the measured 0.0254 m (1 in) bars at 10

 56
Iteration 2 for 0.0254 m (1 in)
bars
Iteration 6 for 0.0254 m (1 in)
bars

Iteration 9 for 0.0254 m (1 in)

bars
he
 m

Iteration 10 for 0.0254 m (1 in)

bars
 Paige and Saunders algorithm
.

Figure 5.15. 100 iterations of the deconvolution algorithm.

5.3.4 Reverse Engineering Filter Construction

 One approach to constructing a deconvolving filter is to reverse the position of the
ground truth vector and the filter matrix. That is, one assumes that the ground truth is
known and that the filter is unknown. Thus the general problem of solving for the filter
becomes one of solving G = FH where G is the blurred image and F is the assumed
ground truth put into a matrix form while the unknown filter is treated as an unknown
vector H. A sample program for performing the reverse engineering filter identification is
given in Appendix C5. The essential idea in the subroutine Aprod was to set the indices
up in such a manner that the ground truth matrix aligned with the filter matrix, treated as
a vector. A discussion of how these matrices were aligned is also given in Appendix
C5.1.

 When the program was implemented on the simulated 0.0254 m (1 in) bar data, it
produced a filter essentially the same size as the blurred image but the product of the
ground truth matrix and the reverse engineered filter produced a blurred image nearly
indistinguishable from the blurred image. This is shown in Fig. 5.16.

m (1in) 10m
m (1in) 10m
Measured 25.4 m
Measured 25.4 m

Figure 5.16. Results of applying the reverse e

0.0254 m (1 i

57
versed Engineered Filter
versed Engineered Filter
ngineered filter to ground truth data for
n) bars.

From ReFrom Re

 Even though the reverse engineering algorithm appeared to produce a filter that could
reproduce the original blurred data when applied to the simulated ground truth, when the
filter was used in the deconvolution progam it was unsuccessful in reproducing the
ground truth image. This is shown in Fig. 5.17.

Figure 5.17. Result of applying the reverse engineered filter in the
deconvolution program using the 0.0254 m (1 in) bar measured data.

 58

6.0 Summary and Future Directions

6.1 Summary

The applications for LADARs, ranging from terrain representation to object

recognition, have been increasing steadily over the past two decades and continue to
grow. As compared to traditional methods, LADARs enable the rapid capture of large
amounts of 3D information- several million points per scan. A typical LADAR locates a
point via range and angular information, providing coordinates centered at the
instrument. In addition to range and angular information, most LADARs return an
intensity level that can be used for imaging. Some LADARs also return other spectral
data such a red, green, and blue color levels.

LADARs have been used at NIST for several projects. One of these projects,
involved the use of LADARs for object recognition at construction sites. Object
recognition is crucial from several standpoints: automating processes such as “pick and
place”, ground truth determination, inventory, and obstacle avoidance. The wide and
ubiquitous use of bar codes led to the possibility of a similar implementation for a
construction site. The idea was to use the intensity information from a LADAR to “read”
a bar code. Experiments were conducted to determine the feasibility of this idea.

These experiments involved scanning bar codes made of highly reflective material

in various configurations and at various distances. The data obtained by the LADAR
indicated that beyond 10 m the images of the bar become so distorted that image
processing techniques would have to be applied to even attempt to recover the bar
configurations. However, the image processing techniques require an understanding of
how the LADAR beam dispersed and was reflected, and how the return signal is
processed by the LADAR optics. Much of the information about data processing by the
LADAR is usually proprietary to the LADAR manufacturer.

An attempt was made to create an approximate model of these processes, called a

Beam Spread Function. This beam spread function was needed to attempt to reconstruct
or deconvolve the bar configurations from the distorted images. The deconvolution
algorithm used depended on an iterative solution method for a large least squares
minimization problem in which the distorted LADAR image was approximated by the
product of a large matrix representing the Beam Spread Function and the unknown
ground truth image. The Beam Spread Function model was represented by a large sparse
matrix. In order to minimize computation time in the iterative least squares algorithm a
fast sparse matrix – vector multiply algorithm was developed that also minimized storage
requirements for the matices and vectors involved.

Although deconvolution is often highly successful in reconstructing photographic

images, the results of the current study indicate that until finer resolution LADARs are
made available, deconvolution techniques have limited capability of recovering LADAR
images.

 59

6.2. Future Work

The methods used to approximate the beam spread function were very crude as
there were no procedures, standard or otherwise, and facilities available for this purpose.
These experiments and others to characterize a LADAR underscore the necessity of an
intramural test facility. In keeping with its mission as the Nation’s metrology laboratory,
NIST is in a position to provide such metrology support to both users and manufacturers
of LADARs in addition to meeting its own substantial internal calibration needs. As a
first step towards establishing this test facility, a LADAR calibration facility workshop
was convened in June, 2003. It is envisioned that such a facility would enable
characterization of LADARs in terms of range and pointing angle uncertainties, beam
spread, and resolution.

 60

7.0 References

[1] Cheok, G. S., Leigh, S., and Rukhin, A., “Calibration Experiments of a Laser
Scanner”, NISTIR 6922, National Institute of Standards and Technology, Gaithersburg,
MD, September, 2002.

[2] Elden, L. “Algorithms for the regularization of ill-conditioned least squares
problems”, BIT, Vol. 17, 1977, 134-145.

[3] Gilsinn, D. E., Cheok, G. S., O’Leary, D. P., “Reconstructing images of bar codes for
construction site recognition”, NIST SP 989, 19th International Symposium on
Automation and Robotics in Construction, NIST, Gaithersburg, MD, September, 23-25,
2002, 363-368.

[4] Golub, G., “Numerical methods for solving linear least squares problems”,
Numerische Mathematik, Vol. 7, 1965, 206-216.

[5] Golub, G., Kahan, W., “Calculating the singular values and pseudo-inverse of a
matrix”, J. SIAM Numer. Anal., Ser. B, Vol. 2, No. 2, 1965, 205-224.

[6] Paige, C. “Bidiagonalization of matrices and solution of linear equations”, SIAM J.
Numer. Anal., Vol. 11, No. 1, 1974, 197-209

[7] Paige, C., Saunders, M., “LSQR: An algorithm for sparse linear equations and sparse
least squares”, ACM Transactions on Mathematical Software, Vol. 8, No. 1, 1982, 43-71

[8] Paige, C., Saunders, M., “Algorithm 583, LSQR: Sparse linear equations and least
squares problems”, ACM Transactions on Mathematical Software, Vol. 8, No. 2, 1982,
195-209.

[9] Saunders, M., “Solution of sparse rectangular systems using LSQR and CRAIG”,
BIT, Vol. 35, 1995, 588-604.

 61

APPENDIX A: Fast Matrix Vector Products

 The least squares algorithm outlined in Section 6.2 and detailed below in Appendix B
required the calculation of matrix products of the form Hf and . The algorithms for
both of these products are intimately related. They assume that a ground truth image, the
distorted image and beam matrix are specified as in Section 5.

gH T

A.1 Calculating Hf

 The object of the algorithm to compute the distorted image g = Hf is to perform the
operation by only storing the ground truth image, f, and beam spread matrix, which is
only of size ma x ma. That is, compute the ng x ng distorted image by only storing the ma
x ma beam spread matrix and the nf x nf ground truth image.

 One begins by storing the distorted image g and the ground truth image f as vectors by
columns

(1,1)
(2,1)

(, 1)
(1, 2)

(.1)
(, 2)

(1,)

(,)

f
f

f nf
f

f A
f nf

f nf

f nf nf

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎟⎟

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

),(

),1(

)2,(

)2,1(
)1,(

)1,2(
)1,1(

ngngg

ngg

ngg

g
ngg

g
g

g

With f and g stored as vectors an examination of the discrete convolution double
summation shows that the calculation would require the beam spread function be stored
as a large sparse matrix of the form

 62

1 2

1 2

1 2

0 0
0 0

(.2)

0 0 0

ma

ma

ma

H H H
H H H

H A

H H H

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where, for q = 1, …, ma

(, 1) (1, 1) (1, 1) 0 0
0 (, 1) (1, 1) (1, 1) 0

(.3)

0 0 0 (, 1) (1, 1) (1, 1)

q

H ma ma q H ma ma q H ma q
H ma ma q H ma ma q H ma q

H A

H ma ma q H ma ma q H ma q

− + − − + − +⎛ ⎞
⎜ ⎟− + − − + − +⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟− + − − + − +⎝ ⎠

 Each block Hq is made up of ng rows by nf columns. The entire H matrix is made up of
ng2 rows by nf 2 columns. Each line of block Hq is made up of the same values but shifted
by one for each row. The entire H matrix is made up of the same block rows but shifted
by one block at the next block row. The significant thing about this structure is that one
does not need to store the entire matrix. In fact one only needs to store the ma x ma beam
spread matrix.

 Since f and g are stored by column one can re-index them as a single dimension array
f(k) = f(i, j) where k = (j-1)*nf + i and g(l) = g(r,s) where l = (s-1)*ng + r. Next write f
and g as blocks of vectors

1

2 (.4)

ng

g
g

g A

g

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

nff

f
f

f 2

1

where

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
+−
+−

=

)*(

)2*)1((
)1*)1((

nfif

nfif
nfif

fi

((1)* 1)
((1)* 2)

(.5)

(*)

p

g s ng
g s ng

g A

g s ng

− +⎛ ⎞
⎜ ⎟− +⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 63

The algorithm generates the g vector a block vector gp at a time where p = 1, 2, …, ng
and

1 2 1 (1) (.6)p p p ma p mag H f H f H f A+ + −= + + +

 Given a p one now steps across the fi blocks by letting i = p, …, p+(ma-1). To do this
introduce an index k = 0, 1, …, ma-1 and set i = p+k and observe that the product
Hk+1fp+k looks like

1

(,) (1,) 0 0 ((1)* 1)
0 (,) (1,) 0 ((1)* 2)

(.7)

0 0 0 (,) (1,) (()*)

k p k

H ma ma k H ma k f p k nf
H ma ma k H ma k f p k nf

H f A

H ma ma k H ma k f p k nf

+ +

− − + − +⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− − + − +⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − +⎝ ⎠ ⎝ ⎠

where one uses the fact that ma-k = ma-(k+1)+1.

 The algorithm proceeds as follows: Step through p = 1, 2, …, ng, i.e. loop on each g
vector block. For each p, step through l = 1, 2, …, ng, i.e. loop on each row of the pth
vector block. Compute the current global element of the g vector that is being computed
as j = (p-1)*ng + l. Form the double sum below.

1 1

0 0

() (,)* ((1)*) (.8)
ma ma

k q

g j H ma q ma k f p k nf l q A
− −

= =

= − − + − + +∑ ∑

 This algorithm can be implemented with 4 loops and 13 lines of code as shown in the
sample FORTRAN 90 code below.

DO p = 1,ng ! Loop over each y block of ng elements
 DO l = 1,ng ! Loop over local row number within y block
 j = (p-1)*ng + l
 sum = 0.0
 DO k = 0,ma-1 ! Loop over f blocks of nf elements
 DO q = 0,ma-1 ! Form the inner product for row j
 e = (p + k - 1)*nf +l + q
 sum = sum + h(ma-q,ma-k)*f(e)
 END DO
 END DO
 g(j) = g(j) + sum ! Add A*f to g for row j
 END DO
END DO

 64

A.2 Calculating HTg

 The algorithm to compute begins by setting in vector block form gH T

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ngnf g

g
g

g

f

f
f

f 2

1

2

1

 (A.9)

as in Equation (A.4). The transpose of H looks like

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T
ma

TT
ma

TT
ma

T

TT

T

T

H

HH
HH

H
HH

H

H

000

0

0
0
00

2

1

2

12

1

 (A.10)

The computation can be written in columnd form as gHf T=

ng

T
ma

T

T

T
ma

T

T

T
ma

T

T

T

nf

g

H

H
Hg

H

H
H

gH

H
H

gH

f

f
f

f

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

12

2

1

1

2

1

2

1 0

0

0

0

0

0

For the sake of the current discussion initialize f = 0. Then the left hand side can be
computed by iterative block summations. We observe that nf = ng + ma – 1. Thus for
each g block p = 1, 2, …, ng

 65

Block 1

1

1222

1111

gHff

gHff
gHff

T
mamama

T

T

+=

+=

+=

Block 2

211

2233

2122

gHff

gHff
gHff

T
mamama

T

T

+=

+=

+=

++

Block p

p
T
mamapmap

p
T

pp

p
T

pp

gHff

gHff

gHff

+=

+=

+=

−+−+

++

)1()1(

211

1

Block ng

ng
T
mamangmangnf

ng
T

ngng

ng
T

ngng

gHfff

gHff

gHff

+==

+=

+=

−+−+

++

)1()1(

211

1

 This sequence of block operations constitutes the outer loop of the algorithm. For the
pth block in this loop one must compute individual elements on the left using elements on
the right. This constitutes the first inner loop where each local index of is associated
with the global index used to define the entire vector g. Thus, for each l = 1, 2, …, ng
associate the global index j = (p-1)ng + l. Therefore, the p

pg

th block of g can be written

 66

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

+−

+−

=

))1((

))1((

)1)1((

ngngpg

lngpg

ngpg

g p

Note that in each p block there are ma separate summations given by

p
T
kkpkp gHff 1+++ +=

for k = 0, 1, …, ma-1 which constitutes the second inner loop. The matrix-vector product

 is evaluated as an accumulated summation p
T
k gH 1+

))1((

)),1((

),(

),0(
0

0

)1)1((

0

0
)),1((

),(

),0(

))1((

),1(

),(
0

0

)1)1((

0

0
),1(

),(

1

ngngpg

kmamamah

kmaqmah

kmamah

ngpg
kmamamah

kmaqmah

kmamah

ngngpg

kmah

kmamah
ngpg

kmah

kmamah

gH p
T
k

+−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−

−−
+

++−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−

−−

=

+−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
+++−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=+

 67

where the index q = 0, 1, …, ma-1 represents the index of the final inner loop. The left
hand vector is given by kpf +

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+

+−+
=+

))1((

)1)1((

nfnfkpf

nfkpf
f kp

 Note that the entire summation above is identified by two indices. The index l = 1, 2,
…, ng identifies the term in the summation. The index q = 0, 1, …, ma-1 identifies the
row for the given term l. If we assume that the vector has been initialized before
the summation begins then the sum can be accumulated as

kpf +

))1((),())1(())1((lngpgkmaqmahqlnfkpfqlnfkpf +−−−+++−+=++−+

This summation proceeds as follows. Beginning with the l = 1 term the first ma rows (i.e.
q = 0, 1, …, ma-1) are added to the initialized first ma elements of (i.e. l + q = 1, 2,
…, ma). Then the elements of rows 2, 3, …, ma + 1 of the l = 2 term are added to the 2,
3, …, ma + 1 elements of (i.e. l + q = 2, 3, …, 2 + (ma –1)). Next rows 3, 4, …,
ma + 2 of the l = 3 term are added to rows 3, 4, …, ma + 2 of (i. e. l + q = 3, 4,
…, 3 + (ma – 1)). This process continues until l = ng. Note that the indexing accounts for
the shifting down by one element of the columns of for l = 1, 2, …, ng.

kpf +

kpf +

kpf +

T
kH 1+

 In terms of the actual implementation of the code k is incremented after l is set. That is,
all first terms of the sum are accumulated for k = 0, 1, …, ma –1, then the second terms
are accumulated for each k and so forth.

DO p = 1,ng
 DO l = 1,ng
 j = (p-1)*ng + l
 gj = g(j)
 DO k = 0,ma-1
 DO q = 0,ma-1
 e = (p+k-1)*nf + l + q
 f(e) = f(e) + h(ma-q,ma-k)*gj
 END DO
 END DO
 END DO
END DO

 68

APPENDIX B: LSQR Algorithm

 In this appendix we present an expanded discussion of the least squares algorithm
presented in Section 4. The algorithm is that of Paige and Saunders [6, 7]. The first part
of the appendix describes the iterative development of the U and V matrices such that

TH UBV=

where B is bidiagonal. The second part of the appendix describes the algorithm for the
sequential minimization of a reduced least squares problem.

B.1 Computing U and V

 To compute U and V, given columnwise with

[]nvvvV ,,, 21= , (B.1)
note that

[] []

1

2 2

1 1 1

1

0

, , , , , , , , ,

0

i n i i n i i

i

n n

H v v v u u u u

α
β α

β α
β

β α

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (B.2)

implies that

1 1i i i i iHv u uα β + += + (B.3)

or to compute the (i+1)-st term of U let

1 1i i i iu Hv iuβ α+ + = − (B.4)

where 1+iβ is selected so that .11 =+iu Furthermore

 69

[] []

1 2

2 3

1 1 1 1 1

1

0

, , , , , , , , ,

0

T
i n i i n i i

i

n

n

H u u u v v v v

α β
α β

α β
α

β
α

+ +

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (B.5)

Then

1 1 1
T

i i i i I 1H u vβ α v+ + += + +

v

1

 (B.6)

or to compute the (i+1)-st term of V let

1 1 1 1
T

i i i i iv H uα β+ + + += − . (B.7)

 Thus one can sequentially generate the columns of U, V and the bidiagonal elements of
B as follows. Initialize 1 /u g β= where 1 gβ = . Next compute so that

and
1v 1 1 1

Tv H uα =

.11 =v Then for i = 1,2, …, n-1 compute so that 11 , ++ ii vu 111 == ++ ii vu by

1 1

1 1 1 1

i i i i i
T

i i i i i

u Hv u

v H u

β α

α β
+ +

+ + + +

= −

= − v
. (B.8)

At the kth stage one would have computed

[]
[]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

=
=

+1

22

1

1

1

0
,,
,,

k

k

k

kk

kk

B

vvV
uuU

β
α

αβ
α

 (B.9)

where is a (k+1) x k matrix. One further has kB

beU k =+)(111 β (B.10)

since

 70

[]
1

1 1 1 1 1 1 1

0
() , ,

0

k kU e u u u

β

β β+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

g=

k

. (B.11)

It is clear that

1k kHV U B+= . (B.12)

One can also show that

1 1
T T

k k k k k k1 1
TH U V B u eα+ += + + + . (B.13)

This follows from

[] []
[] [

1 1 1 1 1 2 1 2 2 1 1

1 1 2 1 2 2 1 1 1

1 1 1

, , , , ,

, , , 0, 0, , 1

T T
k k k k k k

k k k k

T T
k k k k k

H U A u u v v v v v

v v v v v

V B v e

α β α β α

α β α β α

α

+ + +

+ + +

+ + +

= = + +

= + +

= +

]
1+ +

. (B.14)

B.2 The sequential minimization algorithm

 Now we will explain the algorithm used to solve a sequence of minimization problems
written as

11min eyB kkyk

β− . (B.15)

For notation, set

1 1 1

k k k

k k

k k

f V y
r g Af
t e Bβ+ ky

=
= −
= −

 (B.16)

kr and are related by 1+kt

11 ++= kkk tUr (B.17)

since

 71

1 1 1

1 1 1 1

1 1 1

1 1

()
()
()

k k k

k k k k

k k k

k k

r g Hx U e HV y
U e U B y
U e B y
U t

k kβ
β
β

+

+ +

+

+ +

= − = −
= −
= −
=

. (B.18)

 Introduce the augmented matrix of columns][11eBk β . It will be shown below that

 can be transformed by an orthogonal matrix as follows kB kQ

⎥
⎦

⎤
⎢
⎣

⎡
=

0
k

kk

R
BQ (B.18)

where is (k+1) x (k+1), is (k+1) x k. The right hand side is (k+1) x k and kQ kB

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

k

k

kR

ρ
θ

θρ
θρ

00

0
00
00

32

21

. (B.19)

 To show how the orthogonal matrix is developed let kQ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nn

B

αβ

β
αβ

α

00
0

0
00
00

3

22

1

. (B.20)

Suppose that B has been reduced at the (k-1)st step to

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

++

−

n

n

kk

k

kkB

β
α

αβ
α
θρ

θρ
θρ

11

1

32

21

. (B.21)

 72

Construct the kth Givens rotation matrix as follows.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
=

1

1

1
1

kk

kk

cs
sc

Q (B.22)

where are on the k-th row and kk sc , kk cs −, are on the (k+1)st row with on the
diagonal. This becomes an orthogonal matrix if one selects . Note that

kk cc −,
122 =+ kk cs

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
+

=

++

++

−

n

n

kkkkkk

kkkkkk

kk

ccs
ssc

BQ

β
α

αβα
αβα

θρ

θρ
θρ

11

11

1

32

21

. (B.23)

 At this point one sets 01 =− +kkkk cs βα and selects

2
1

22
1

2

1 ,
++

+

+
=

+
=

kk

k
k

kk

k
k cs

βα

α

βα

β
. (B.24)

This selection satisfies the previous criterion and then one can set

()

11

1

2/12
1

2
1

++

+

++

−=
=

+=+=

kkk

kkk

kkkkkkk

c
s

sc

αρ
αθ

βαβαρ
. (B.25)

Note that in the last step 1+nβ is transformed to zero. This says that at the kth stage the
rotation essentially performs

 73

1

1 11 1

0
00

k k k k kk k

k k k kk k

c s
s c

ρ θ φρ φ
ρ φβ α

+

+ ++ +

⎡ ⎤⎡ ⎤ ⎡
=⎢ ⎥⎢ ⎥ ⎢−⎣ ⎦ ⎣⎣ ⎦

⎤
⎥
⎦

. (B.26)

Now applying the matrix to the augmented matrix kQ []11eBk β gives

[] []1 1 1 1

1

1 2 1

2 3 2

1 1

1

0

0 0
0 0

0
0 0

k k k k k

k k

k

k k k

k k

k

Q B e Q B Q e

R

β β

ϕ
φ

ρ θ φ
ρ θ φ

ρ θ φ
ρ φ

φ

+

− −

+

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (B.27)

The significance of this decomposition, called a QR factorization, is that we can write

22 2
1 1 1 1k k k k k k k k k kB y e Q B y Q e R y 2β β ϕ− = − = − + φ . (B.28)

Therefore the left member is minimized if one solves kkk fyR = and the minimum is
equal to the last term, where

1

k

k

φ
ϕ

φ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. (B.29)

Although this relationship will not be needed directly it is interesting to note the
relationship between and 1+kt 1+kφ is given by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+
+

1
1

0

k

T
kk Qt
φ

. (B.30)

This relationship follows from the orthogonality of and kQ

1 1 1
1 1

0
()

0
k k k kk k

k k k k k k
k k

R yR y
Q t Q e Q B y

ϕ ϕ
β

φ φ+
+ +

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= − = − = =⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠1kφ +
⎟ (B.31)

 74

under the assumption that has been computed from ky k k kR y ϕ= .

 The previous relations make it possible to compute kf directly without computing
or . In particular write

ky

1+kt

1
k k kf V R kϕ

−= . (B.32)

Define

[]kkkk dddRVD 21
1 == − . (B.33)

The columns of can be found directly from kD

T
k

T
k

T
k VDR = (B.34)

by forward substitution. The significance of using forward substitution is that the
columns can be computed iteratively as needed and then discarded. The columns are
computed as follows. Set

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

T
k

T

T
k

kk

T
k

T
k

T

T
k

v

v
V

R

d

d
D

1

22

1

1

0

00

ρθ

ρθ
ρ

. (B.35)

Then

1 1 1
1 1

2 2 2 1 2 2

1

0 0

0

T
T T

T T
T T
k k

T T
k kT T

k k k k k k

d
d v

d d
R D

d v
d d

ρ ρ
θ ρ θ ρ

θ ρ θ ρ−

⎛ ⎞⎡ ⎤
⎛ ⎞ ⎛⎜ ⎟⎢ ⎥ +⎜ ⎟ ⎜⎜ ⎟⎢ ⎥= =⎜ ⎟ ⎜⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎝⎜ ⎟+⎢ ⎥⎣ ⎦ ⎝ ⎠

⎞
⎟

= ⎟
⎟
⎠

 (B.36)

which implies, setting , 000 == xd

 75

)(1

)(1

1

1

122
2

2

1
1

1

−−=

−=

=

kkk
k

k dvd

dvd

vd

θ
ρ

θ
ρ

ρ

 (B.37)

and

[] []
1 1

1 1 1

1

k k k k k k k k k

k k

1 kf D d d d d d f
φ φ

dϕ φ
φ φ

− −

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = = + = +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

φ . (B.38)

This implies that kf can be computed in an iterative fashion. The actual algorithm of
Paige and Saunders [7, 8] introduces a slightly different but equivalent iteration. In
particular, write

)(11
1

−−
−

−= kk
k

k
kkk dvd ρ

ρ
θ

ρ . (B.39)

Then set kkk dw ρ= and write the two step iteration

1
1

1

k
k k k

k

k
k k k

k

w v w

f f w

θ
ρ
φ
ρ

−
−

−

= −

= +
. (B.40)

 The iterative algorithm of Paige and Saunders [7, 8] can now be formulated as follows.

Step 1: Initialization

 76

1

1
1

1 1

1
1

1 1

0

1 1

1 1

1

1

0

T

T

g

u g

H u

v H

w v
x

β

β

α

α

φ β
ρ α

=

=

=

=

=
=

=
=

1u . (B.41)

Step 2: Execute the outer loop

For i = 1,2,3, … do steps 3 through 6.

Step 3: Get the current values of u and v.

()

()

1

1
1

1 1 1

1 1
1

1

1

i i i i

i i i i
i

T
i i i i

T
i i

i

Hv u

u Hv u

H u v

v H u

β α

α
β

α β

β
α

+

+
+

+ + +

+ +
+

= −

= −

= −

= − 1i iv+

. (B.42)

Step 4: Apply the Givens rotation

()

iii

iii

iii

iii

i

i
i

i

i
i

iii

s

c
c

s

s

c

φφ

φφ

αρ
αθ

ρ
β
ρ
ρ

βρρ

=

=

−=
=

=

=

+=

+

++

++

+

+

1

11

11

1

2/12
1

2

. (B.43)

Step 5: Update f and w

 77

1

1
1 1

i
i i i

i

i
i i

i
i

f f w

w v w

φ
ρ
θ
ρ

−

+
+ +

= +

= −
. (B.44)

Step 6: Test for convergence

If the algorithm converged exit, otherwise return to step 2.

To test for convergence Paige and Saunders [6, 7] estimate the following items

, , , ,T
k k kr H r f H cond H() . (B.45)

To estimate kr one begins with

111
1

111

0
+++

+
+++ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== k

T
kkk

k

T
kkkkk eQUQUtUr φ
φ

. (B.46)

Since the norm of orthogonal matrices is one and the norm of is one then 1+ke

1+= kkr φ . (B.47)

But 1+kφ is computed by

kk sss 2111 βφ =+ (B.48)

so that

kk sssr 211β= (B.49)

and since in magnitude is less than one the iterative product pushes the norm to zero. is

In estimating T

kH r one is really estimating the difference between the right and left

sides of the normal equation at . Begin with kx

()
1 1 1 1 1 1 1

1 1 1 1 1 1

T T T T T
k k k k k k k k k k k k k

T T T T
k k k k k k k k k k

H r H U Q e V B V e Q e

V B Q e V e Q e

φ φ α

φ α

+ + + + + + +

+ + + + + +

⎡ ⎤= = +⎣ ⎦
⎡ ⎤= +⎣ ⎦

1
T

+
. (B.50)

 78

Note that

[] []0T
k

T
kk

T
k

T
k RBQQB == . (B.51)

Then

()1 1 1 1 10T T T T
k k k k k k k k k k k1 1H r V R e e Q e Vφ φ α+ + + + + +⎡ ⎤= +⎣ ⎦ +

0

. (B.52)

But since 10T
k kR e +⎡ ⎤ =⎣ ⎦ []0T

kR has k rows and k+1 columns with the (k+1)-st

column identically zero and the vector has all zero elements except with a one in the
(k+1)-st element. Also since

1+ke

kk
T
k

T
k ceQe −=++ 11

[] []1 1

1
0 0

0 0 1 1 0
0 0
1 1

T T
k k k k k

k k

k k

e Q e s c c
c s
s c

+ +

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎢ ⎥−⎣ ⎦

k− = − (B.53)

so that

()1
T

k k k k kH r cφ α += − V . (B.54)

Therefore

1 1
T

k k k kH r φ α+ += c . (B.55)

As long as 1+kα does not grow too rapidly then this decreases towards zero.

 79

APPENDIX C: Sample Programs

NIST Standard Software Disclaimer

 This software was developed at the National Institute of Standards and Technology by
employees of the Federal Government in the course of their official duties. Pursuant to
title 17 Section 105 of the United States Code this software is not subject to copyright
protection and is in the public domain. The individual programs are part of an
experimental system. NIST assumes no responsibility whatsoever for its use by other
parties, and makes no guarantees, expressed or implied, about its quality, reliability, or
any other characteristic. Users of the programs assume sole responsibility under Federal
law for determining the appropriateness of its use in any particular application; for any
conclusions drawn from the results of its use; and for any actions taken or not taken as a
result of analyzes performed using these tools. We would appreciate acknowledgement if
the software is used.

INTENT AND USE

 The algorithms, procedures, and computer programs described in this report constitute
a methodology for predicting some of the consequences resulting from LADAR scans.
They have been compiled from the best knowledge and understanding currently
available, but have important limitations that must be understood and considered by the
user. The program is intended for use by persons competent in the field of image
processing and with some familiarity with personal computers. It is intended as an aid in
reconstructing images blurred by LADAR optics.

PROGRAMS

 The following program scripts are given in this appendix:

1. In Section C1 the Matlab script INT_DIST.m is given. This script takes a file
generated by a LADAR and first produces a histogram of intensity values. The
histogram usually shows two dominant peaks. The leftmost one in general
represents background intensities and the rightmost one in general represents the
bar code intensities. The background is stripped from the file and the bar codes
displayed. The user has the option of saving the displayed figures in Postscript,
Encapsulated Postscript, JPEG, or TIFF formats.

2. In Section C2 the Matlab script GENERATE_BAR_DATA.m is given. This
script produces nine files of simulated ground truth data. It produces files for
0.0254 m (1 in) bars, 0.0508 m (2 in) bars and 0.1016 m (4 in) bars at 10 m, 20 m
and 40 m distance.

 80

3. In Section C3 a FORTRAN 90 program, called CONVOLVE.F90, program
implements a fast convolution algorithm on simulated ground truth bar code data.
The objects of the program are to test the effect of various convolution filters on
the ground truth data and produce blurred images of bar code data that can be
compared to bar code images acquired by LADAR scans. The program assumes
the existence of a square array ground truth data set,f, and a square array, h,
representing the convolution filter. The program produces a blurred array by
performing a finite convolution summation

4. In Section C4 a FORTRAN 90 program, called DECONVOLVE.F90, program
reconstructs ground truth bar code images from blurred images obtained from
LADAR scans. The program assumes the existence of a square array scanned data
set,g, and a square array, h, representing the convolution filter. The program
produces a best estimate array of ground truth by applying an iterative least
squares algorithm to a finite convolution summation. It is an inverse problem.

5. In Section C5.2 a FORTRAN 90 program, called SPREAD_FUNCTIO.F90
constructs by a least squares algorithm with residual correction an estimate of the
kernel matrix that generates a given blurred image from a known ground truth
image.

.

 81

C1. MATLAB Script to Isolate Bar Codes

%**
%INT_DIST - Separates Bar Code intensity data from background
% intensity.
%**
%This file employs a simple segmentation approach in order
%to eliminate the background intensities and distances. This
%brings the bar code intensities and distance measurements to
%the foreground. The assumption behind the technique is that
%when the image intensities are histogrammed they will fall
%into a histogram form with two prominent peaks. The first
%peak represents the backgound intensities and the second
%represents the bar code intensities. The algorithm to
%eliminate the background is simply to select out the intensity
%values less than 200.
%
%The input file for this script is assumed to have been
%generated by a LADAR scanning instrument and provides
%x, y, z, and intensity values of object hits. The units
%of the coordinates are in meters. The intensity values are
%integers between 0 and 255. The positive x coordinate is
%directed from the scanner towards the target object,
%positive y is towards the right and positive z is down.
%The origin is the upper left data point of the scan.
%
%Input file format:
%
%The first lines are header information lines beginning
%with #. These lines are followed by individual lines
%of data points in four columns. The first column is x,
%the second column is y, the third z, and the fourth
%intensity. The input file extension must be .txt.
%
%Output file formats:
%
%There are three output file types available:
%
%1. The first file will have the same name as the input file
% with extension .dat. This file will contain only the data
% points with the header lines from the input stripped off.
% This file is automatically produced.
%2. The second file is a file of data points of the measured
% bar code data extracted from the input data file with the
% background noise removed. This is also automatically

 82

% produced.
%3. The third type of file is optional. Each of the figures
% produced has a menu button that allows the image to be
% stored in either Postscript (black and white), Postscript
% (color), Encapsulated Postscript (black and white),
% Encapsulated Postscript (color), JPEG, or TIFF.
%
%Usage instructions:
%
%1. First change the working directory in Matlab
% to the directory with the script and data files.
%2. The current m-file is interactive. The user will be asked
% to enter the minimum intensity value between peaks
% in the histogram displayed when asked.
%3. For titles to plots, underscores in file names
% are changed to hyphens for display
%4. Each plot has a menu button to print the plot to a file
% in postscript, JPEG or TIFF.
%
% Author:
% David E. Gilsinn
% Mathematical and Computational Sciences Division
% National Institute of Standards and Technology
% 100 Bureau Drive, Stop 8910
% Gaithersburg, MD 20899-8910
% e-mail: dgilsinn@nist.gov
%
%***

%Enter input file with .txt extension and create .dat file

file_name = input('Enter file name (omit .txt):','s');
infile = strcat(file_name,'.txt');
s = strcat(file_name,'.dat');
fidin = fopen(infile,'r');
fidout = fopen(s,'w');

%Strip the Header lines from the input file

while feof(fidin) ==0
 line = fgetl(fidin);
 match = findstr(line,'#');
 num = length(match);
 if num == 0

 83

mailto:dgilsinn@nist.gov

 fprintf(fidout,'%s\n',line);
 end
end
fclose(fidin);
fclose(fidout);

%load the .dat file

load (s);

%Matlab loads the data file into a matrix with the same name
%as the file, but if the file_name begins with a number then
%Matlab adds an X in front of it.

%Test whether the file starts with a number. If so then add X
%in front. In either case read the matrix into the array a for
%easier handling.

if isletter(s(1)) == 0
 X_file_name = strcat('X',file_name);
 a = eval(X_file_name);
else
 a = eval(file_name);
end

%pull out array columns as vectors

dist = a(:,1);
y = -a(:,2);
z = a(:,3);
intensity = a(:,4);

%Generate histogram of intensities to estimate
%where to cut the image to get rid of background
%"noise". Set up image output menu.

f3 = figure(1);
hist(intensity,100);
xlabel('Intensity Level');
ylabel('Frequency Count');
s3 = strcat(file_name,'_intensity_hist');
new_file_name_3 = strrep(file_name,'_','-');
title(new_file_name_3);
set(f3,'NumberTitle','off',...
 'Name',s3);

 84

set(f3,'NumberTitle','off',...
 'Name',s3);
pr3 = uimenu(f3,...
 'Label',' Print File');
ps3 = uimenu(pr3,...
 'Label','Postscript, Black and White',...
 'CallBack','print(f3,''-dps'',s3)');
psc3 = uimenu(pr3,...
 'Label','Postscript, Color',...
 'CallBack','print(f3,''-dpsc'',s3)');
eps3 = uimenu(pr3,...
 'Label','Encapsulated Postscript',...
 'CallBack','print(f3,''-deps'',s3)');
epsc3 = uimenu(pr3,...
 'Label','Encapsulated Postscript, Color',...
 'CallBack','print(f3,''-depsc'',s3)');
jpg3 = uimenu(pr3,...
 'Label','JPEG',...
 'CallBack','print(f3,''-djpeg90'',s3)');
tiff3 = uimenu(pr3,...
 'Label','TIFF',...
 'CallBack','print(f3,''-dtiff'',s3)');

%Filter out intensities less than 200

cutval = 200;

%Find all intensity values greater than or equal to cutval

k=find(intensity >= cutval);
y1 = y(k);
z1 = z(k);
int1 = intensity(k);

%Generate the Bar Code intensity image. This image
%will likely not have a square base.

f1 = figure(2);
ylin = linspace(min(y1),max(y1),257);
zlin = linspace(min(z1),max(z1),257);
[Y,Z] = meshgrid(ylin,zlin);
INT = griddata(y1,z1,int1,Y,Z,'cubic');
mesh(Y,Z,INT);
xlabel('y');

 85

ylabel('z');
zlabel('Intensity');
s1 = strcat(file_name,'_intensity');
%change underlines to hyphens
new_file_name_1 = strrep(file_name,'_','-');
title(new_file_name_1);
set(f1,'NumberTitle','off',...
 'Name',s1);
pr1 = uimenu(f1,...
 'Label',' Print File');
ps1 = uimenu(pr1,...
 'Label','Postscript, Black and White',...
 'CallBack','print(f1,''-dps'',s1)');
psc1 = uimenu(pr1,...
 'Label','Postscript, Color',...
 'CallBack','print(f1,''-dpsc'',s1)');
eps1 = uimenu(pr1,...
 'Label','Encapsulated Postscript',...
 'CallBack','print(f1,''-deps'',s1)');
epsc1 = uimenu(pr1,...
 'Label','Encapsulated Postscript, Color',...
 'CallBack','print(f1,''-depsc'',s1)');
jpg1 = uimenu(pr1,...
 'Label','JPEG',...
 'CallBack','print(f1,''-djpeg90'',s1)');
tiff1 = uimenu(pr1,...
 'Label','TIFF',...
 'CallBack','print(f1,''-dtiff'',s1)');

%Generate an output file with a square base.
%The background base will have the value cutval

[row,col] = size(INT);
nanarray = isnan(INT);
[ii,jj] = find(nanarray);
for i = 1:length(ii)
 INT(ii(i),jj(i)) = cutval;
end
outfile = strcat(file_name,'_cut.txt');
fid1 = fopen(outfile,'w');
for j = 1:col
 for i = 1:row
 fprintf(fid1,'%6.2f\n',INT(i,j));
 end

 86

end
fclose(fid1);

%
%Plot the filled in cut intensity picture
%
f4 = figure(3);
mesh(Y,Z,INT);
xlabel('y');
ylabel('z');
zlabel('Intensity');
s4 = strcat(file_name,'_intensity_cut');
%change underlines to hyphens
new_file_name_4 = strrep(file_name,'_','-');
title(new_file_name_4);
set(f4,'NumberTitle','off',...
 'Name',s4);
pr4 = uimenu(f4,...
 'Label',' Print File');
ps4 = uimenu(pr4,...
 'Label','Postscript, Black and White',...
 'CallBack','print(f4,''-dps'',s4)');
psc4 = uimenu(pr4,...
 'Label','Postscript, Color',...
 'CallBack','print(f4,''-dpsc'',s4)');
eps4 = uimenu(pr4,...
 'Label','Encapsulated Postscript',...
 'CallBack','print(f4,''-deps'',s4)');
epsc4 = uimenu(pr4,...
 'Label','Encapsulated Postscript, Color',...
 'CallBack','print(f4,''-depsc'',s4)');
jpg4 = uimenu(pr4,...
 'Label','JPEG',...
 'CallBack','print(f4,''-djpeg90'',s4)');
tiff4 = uimenu(pr4,...
 'Label','TIFF',...
 'CallBack','print(f4,''-dtiff'',s4)');

%
%expand the cut intensity figure
%

f5 = figure(4);
k = find(intensity > cutval);
new_intensity = intensity(k);

 87

new_y = y(k);
new_z = z(k);
new_ylin = linspace(min(new_y),max(new_y),257);
new_zlin = linspace(min(new_z),max(new_z),257);
[NEW_Y,NEW_Z] = meshgrid(new_ylin,new_zlin);
NEW_INT = griddata(new_y,new_z,new_intensity,NEW_Y,NEW_Z,'cubic');
mesh(NEW_Y,NEW_Z,NEW_INT);
xlabel('y');
ylabel('z');
zlabel('Intensity');
s5 = strcat(file_name,'_intensity_crop');
%change underlines to hyphens
new_file_name_5 = strrep(file_name,'_','-');
title(new_file_name_5);
set(f5,'NumberTitle','off',...
 'Name',s5);
pr5 = uimenu(f5,...
 'Label',' Print File');
ps5 = uimenu(pr5,...
 'Label','Postscript, Black and White',...
 'CallBack','print(f5,''-dps'',s5)');
psc5 = uimenu(pr5,...
 'Label','Postscript, Color',...
 'CallBack','print(f5,''-dpsc'',s5)');
eps5 = uimenu(pr5,...
 'Label','Encapsulated Postscript',...
 'CallBack','print(f5,''-deps'',s5)');
epsc5 = uimenu(pr5,...
 'Label','Encapsulated Postscript, Color',...
 'CallBack','print(f5,''-depsc'',s5)');
jpg5 = uimenu(pr5,...
 'Label','JPEG',...
 'CallBack','print(f5,''-djpeg90'',s5)');
tiff5 = uimenu(pr5,...
 'Label','TIFF',...
 'CallBack','print(f5,''-dtiff'',s5)');

 88

C2. MATLAB Script to Create Simulated Bar Codes

%**
%GENERATE_BAR_DATA- This script produces ground truth files for
% the three bar code test configurations used to
% acquire measured bar code intensity data.
%**
% This file generates simulated ground truth image data sets in vector
% form of an approximately 1 meter by 1 meter surface with 9 bar codes
% placed in
% three rows with three bar codes each. This simulation attempts to
% approximately recreate an experiment in which a board with similar
% bar codes of reflector tape was probed by a LADAR beam at various
% distances. The bar codes were 6 in high and 4, 2, 1 in in width for
% the different trials. The 3 top bars were place 4 in apart, the three
% middle bars were placed 3 in below the top row and 2 in apart, while
% the lowest row was placed 3 in below the second with bars place 1 in
% apart. From experimental data the intensity of the background board
% is about 150 and the reflector tape intensity was about 250. This was
% on a range of 0 to 255.
%
% The size of the simulated ground truth image depends on the desired
% filter image size and the filter matrix size. In particular if the
% desired filter matrix is ma x ma and the desired filtered image is ng
% x ng elements then the ground truth image will be set to nf x nf
% where nf = ng + ma - 1. Thus, for a filtered image of side ng
% elements the unit step vertically is dx = 1/(ng-1) and the unit step
% horizontally is dy = 1/(ng-1). In order to make things somewhat easy
% to work with we assume that ng and ma are odd integers which
% also makes nf odd. The ground truth image will be ((ma-1)/2)*dx (or
% dy) units on a side greater than the filtered image.
%
% ****************************
% * *
% * *
% * . . *
% * . +++ +++ +++ . *
% * . + + + + + + . *
% * . +++ +++ +++ . *
% * . . *
% * . +++ +++ +++ . *
% * . + + + + + + . *
% * . +++ +++ +++ . *
% * . . *

 89

% * . +++ +++ +++ . *
% * . + + + + + + . *
% * . +++ +++ +++ . *
% * . . *
% * *
% * *
% ****************************
%
% The figure above is a schematic of a board that holds the bar codes.
% The outside boundary depicted by *** represents the ground truth
% image. Note that it is larger than the filtered image depicted by ...
% since the filter matrix at the boundary of the filtered emage
% overlaps the edge. Let f(i,j) represent the ground truth image. Then
% f(1,1) is taken in the upper left corner and f(nf,nf) is in the lower right. Grid spacing
% will be taken based on dx and dy defined above.
%
% The object of this script is to make nine files of barcode data for
% 4, 2, 1 in bars. These files will simulate ground truth images for
% each of three distances thus nine files. Distances are 10, 20 40
% meters. The files will be used to produce filtered images of size ng
% = 257 points on a side. Interval between points will be
% approximately 0.004 meters (4 mm). At 10 m the filter will be
% ma = 15 points on a side, at 20 m the filter will be 17 points on a
% side and at 40 m it will be 29 points on a side. The number of points
% on a side of the ground truth image is determined by nf = ng + ma -1.
% The matrix structure of the file is: f(1,1) is in the upper left
% corner and f(nf,nf) is in the lower right. This is based on a beam of
% ma x ma points.
%
% x direction is down and y to the right (not LADAR coordinates)
% grid spacing in both x and y = 1/256 = 0.0039, set to 0.004
% bar data set has dimension 1 + ((ma-1)/2)*0.004 in both directions
% Extra amount beyond 1 m square is to accommodate the blurring operator
% at the edges.
%
% The files will be written out as vectors, one entry per line, in the
% form:
% f(1,1), ..., f(nf,1),f(1,2),...,f(nf,2), ...,
% f(1,nf),...,f(nf,nf)
%
% Author:
% David E. Gilsinn
% Mathematical and Computational Sciences Division
% National Institute of Standards and Technology
% 100 Bureau Drive, Stop 8910
% Gaithersburg, MD 20899-8910

 90

% e-mail: dgilsinn@nist.gov
%
%**

%
% Define output file names
%
% The Barfiles will contain (x, y, z) values of the simulated ground truth data
%
Barfiles = ['bars10m1in.txt';'bars10m2in.txt';'bars10m4in.txt';...
 'bars20m1in.txt';'bars20m2in.txt';'bars20m4in.txt';...
 'bars40m1in.txt';'bars40m2in.txt';'bars40m4in.txt'];
%
% The Intfiles will contain only the z values for plotting of the intensities in
% MATLAB
%
Intfiles = ['int10m1in.txt';'int10m2in.txt';'int10m4in.txt';...
 'int20m1in.txt';'int20m2in.txt';'int20m4in.txt';...
 'int40m1in.txt';'int40m2in.txt';'int40m4in.txt'];

Folder = 'c:\Bar_Code_data\';
Barcells = cellstr(Barfiles);
Intcells = cellstr(Intfiles);

%
% Define number of beam grid points per side
%

ma(1) = 15;
ma(2) = 17;
ma(3) = 29;

%
% Define the number of grid points per side for distorted image
%

ng = 257;

%
% Define grid spacing in meters
%

delta = 0.004;

%
%Specify bar code width (numbers refer to inches)

 91

mailto:dgilsinn@nist.gov

%

 bar_width(1) = 1;
 bar_width(2) = 2;
 bar_width(3) = 4;

%
% Generate the nine ground truth image vector files
% by stepping through each of the distances (10, 20, 40 m) and
% then through the bar code sizes (4, 2, 1)

%
% Step through each beam model for a distance
%

for i = 1:3

 %
 % Compute size of ground truth image on a side
 %

 nf = ma(i) + ng -1;

 %
 % Generate the x (downward) location of the
 % corners of the bar codes. Values are in meters
 % Bars are numbered as follows:
 % First index is the bar number
 % Lowest row, left to right: 1,2,3
 % Middle row: 4,5,6
 % Top row: 7,8,9
 % Second index is corner number on bar (clockwise):
 % Corner 1 is lower left, Corner 2 is upper left,
 % Corner 3 is upper right, Corner 4 is lower right.
 %
 % Offset downwards by the ground truth overlap
 %

 bar_x(7,2) = 0.1952 + ((ma(i)-1)/2)*delta;
 bar_x(7,3) = bar_x(7,2);
 bar_x(8,2) = bar_x(7,2);
 bar_x(8,3) = bar_x(7,2);
 bar_x(9,2) = bar_x(7,2);
 bar_x(9,3) = bar_x(7,2);
 bar_x(7,1) = bar_x(7,2) + 0.1524;
 bar_x(7,4) = bar_x(7,1);

 92

 bar_x(8,1) = bar_x(7,1);
 bar_x(8,4) = bar_x(7,1);
 bar_x(9,1) = bar_x(7,1);
 bar_x(9,4) = bar_x(7,1);
 bar_x(4,2) = bar_x(7,1) + 0.0762;
 bar_x(4,3) = bar_x(4,2);
 bar_x(5,2) = bar_x(4,2);
 bar_x(5,3) = bar_x(4,2);
 bar_x(6,2) = bar_x(4,2);
 bar_x(6,3) = bar_x(4,2);
 bar_x(4,1) = bar_x(4,2) + 0.1524;
 bar_x(4,4) = bar_x(4,1);
 bar_x(5,1) = bar_x(4,1);
 bar_x(5,4) = bar_x(4,1);
 bar_x(6,1) = bar_x(4,1);
 bar_x(6,4) = bar_x(4,1);
 bar_x(1,2) = bar_x(4,1) + 0.0762;
 bar_x(1,3) = bar_x(1,2);
 bar_x(2,2) = bar_x(1,2);
 bar_x(2,3) = bar_x(1,2);
 bar_x(3,2) = bar_x(1,2);
 bar_x(3,3) = bar_x(1,2);
 bar_x(1,1) = bar_x(1,2) + 0.1524;
 bar_x(1,4) = bar_x(1,1);
 bar_x(2,1) = bar_x(1,1);
 bar_x(2,4) = bar_x(1,1);
 bar_x(3,1) = bar_x(1,1);
 bar_x(3,4) = bar_x(1,1);

%
%
 for bar_w = 1:3

%
%
%
 %Define the bars y coordinates. bar_width is 4, 2 or 1
 %
 %First index is the bar number
 %Lowest row, left to right: 1,2,3
 %Middle row: 4,5,6
 %Top row: 7,8,9
 %
 %Entering y coordinates that change with
 %bar width working from the board center
 % 4 in = 0.1016 m, 2 in = 0.0508 m

 93

 % 1 in = 0.0254 m, 1/2 in = 0.0127
 %

 switch bar_width(bar_w)

 %
 % The case numbers are the bar width values
 %
 case 4
 %
 %Lowest row: row 1
 %

 bar_y(2,1) = ((1+(ma(i)-1)*delta)/2) - 0.0508;
 bar_y(2,2) = bar_y(2,1);
 bar_y(1,4) = bar_y(2,1) - 0.0254;
 bar_y(1,3) = bar_y(1,4);
 bar_y(1,1) = bar_y(1,4) - 0.1016;
 bar_y(1,2) = bar_y(1,1);
 bar_y(2,4) = ((1+(ma(i)-1)*delta)/2) + 0.0508;
 bar_y(2,3) = bar_y(2,4);
 bar_y(3,1) = bar_y(2,4) + 0.0254;
 bar_y(3,2) = bar_y(3,1);
 bar_y(3,4) = bar_y(3,1) + 0.1016;
 bar_y(3,3) = bar_y(3,4);

 %
 %Middle row: row 2
 %

 bar_y(5,1) = ((1+(ma(i)-1)*delta)/2) - 0.0508;
 bar_y(5,2) = bar_y(5,1);
 bar_y(4,4) = bar_y(5,1) - 0.0508;
 bar_y(4,3) = bar_y(4,4);
 bar_y(4,1) = bar_y(4,3) - 0.1016;
 bar_y(4,2) = bar_y(4,1);
 bar_y(5,4) = ((1+(ma(i)-1)*delta)/2) + 0.0508;
 bar_y(5,3) = bar_y(5,4);
 bar_y(6,1) = bar_y(5,4) + 0.0508;
 bar_y(6,2) = bar_y(6,1);
 bar_y(6,4) = bar_y(6,1) + 0.1016;
 bar_y(6,3) = bar_y(6,4);

 %
 %Top row: row 3
 %

 94

 bar_y(8,1) = ((1+(ma(i)-1)*delta)/2) - 0.0508;
 bar_y(8,2) = bar_y(8,1);
 bar_y(7,4) = bar_y(8,1) - 0.1016;
 bar_y(7,3) = bar_y(7,4);
 bar_y(7,1) = bar_y(7,4) - 0.1016;
 bar_y(7,2) = bar_y(7,1);
 bar_y(8,4) = ((1+(ma(i)-1)*delta)/2) + 0.0508;
 bar_y(8,3) = bar_y(8,4);
 bar_y(9,1) = bar_y(8,4) + 0.1016;
 bar_y(9,2) = bar_y(9,1);
 bar_y(9,4) = bar_y(9,1) + 0.1016;
 bar_y(9,3) = bar_y(9,4);

 %
 %Write out data file
 %
 % Define the output file for each case
 %
 % Create the file names for the eighteen output files
 % Nine (x,y,z) files and nine z files
 % output is the character string for an (x,y,z) data file
 % output1 is the character sting for a z data file
 %
 file = (i-1)*3 + bar_w;
 output = [Folder Barcells{file}];
 output1 = [Folder Intcells{file}];
 fid = fopen(output,'w');
 fid1 = fopen(output1,'w');
 for j = 1:nf
 y = (j-1)*delta;
 for k = 1:nf
 %go down rows first then colums
 x = (k-1)*delta;
 if ((bar_x(7,2) <= x) & …

(x <= bar_x(7,1)))...
 & (((bar_y(7,2) <= y) & ...
 (y <= bar_y(7,3)))...
 | ((bar_y(8,2) <= y) & ...
 (y <= bar_y(8,3)))...
 | ((bar_y(9,2) <= y) & ...
 (y <= bar_y(9,3))))
 z = 250;
 elseif ((bar_x(4,2) <= x) & ...

(x <= bar_x(4,1)))...
 & (((bar_y(4,2) <= y) & ...

 95

 (y <= bar_y(4,3)))...
 | ((bar_y(5,2) <= y) & ...
 (y <= bar_y(5,3)))...
 | ((bar_y(6,2) <= y) & ...
 (y <= bar_y(6,3))))
 z = 250;
 elseif ((bar_x(1,2) <= x) & ...

(x <= bar_x(1,1)))...
 & (((bar_y(1,2) <= y) & ...
 (y <= bar_y(1,3)))...
 | ((bar_y(2,2) <= y) & ...
 (y <= bar_y(2,3)))...
 | ((bar_y(3,2) <= y) & ...
 (y <= bar_y(3,3))))
 z = 250;
 else
 z = 150;
 end
 fprintf(fid,'%8.4f %8.4f %6.2f\n',...

 x,y,z);
 fprintf(fid1,'%6.2f\n',z);
 end
 end
 fclose(fid);
 fclose(fid1);

 %
 case 2
 %
 %Lowest row: row 1
 %

 bar_y(2,1) = ((1+(ma(i)-1)*delta)/2) - 0.0254;
 bar_y(2,2) = bar_y(2,1);
 bar_y(1,4) = bar_y(2,1) - 0.0254;
 bar_y(1,3) = bar_y(1,4);
 bar_y(1,1) = bar_y(1,4) - 0.0508;
 bar_y(1,2) = bar_y(1,1);
 bar_y(2,4) = ((1+(ma(i)-1)*delta)/2) + 0.0254;
 bar_y(2,3) = bar_y(2,4);
 bar_y(3,1) = bar_y(2,4) + 0.0254;
 bar_y(3,2) = bar_y(3,1);
 bar_y(3,4) = bar_y(3,1) + 0.0508;
 bar_y(3,3) = bar_y(3,4);

 %

 96

 %Middle row: row 2
 %

 bar_y(5,1) = ((1+(ma(i)-1)*delta)/2) - 0.0254;
 bar_y(5,2) = bar_y(5,1);
 bar_y(4,4) = bar_y(5,1) - 0.0508;
 bar_y(4,3) = bar_y(4,4);
 bar_y(4,1) = bar_y(4,3) - 0.0508;
 bar_y(4,2) = bar_y(4,1);
 bar_y(5,4) = ((1+(ma(i)-1)*delta)/2) + 0.0254;
 bar_y(5,3) = bar_y(5,4);
 bar_y(6,1) = bar_y(5,4) + 0.0508;
 bar_y(6,2) = bar_y(6,1);
 bar_y(6,4) = bar_y(6,1) + 0.0508;
 bar_y(6,3) = bar_y(6,4);

 %
 %Top row: row 3
 %

 bar_y(8,1) = ((1+(ma(i)-1)*delta)/2) - 0.0254;
 bar_y(8,2) = bar_y(8,1);
 bar_y(7,4) = bar_y(8,1) - 0.1016;
 bar_y(7,3) = bar_y(7,4);
 bar_y(7,1) = bar_y(7,4) - 0.0508;
 bar_y(7,2) = bar_y(7,1);
 bar_y(8,4) = ((1+(ma(i)-1)*delta)/2) + 0.0254;
 bar_y(8,3) = bar_y(8,4);
 bar_y(9,1) = bar_y(8,4) + 0.1016;
 bar_y(9,2) = bar_y(9,1);
 bar_y(9,4) = bar_y(9,1) + 0.0508;
 bar_y(9,3) = bar_y(9,4);

 %
 %Write out data file
 %
 % Define the output file for each case
 %

 file = (i-1)*3 + bar_w;
 output = [Folder Barcells{file}];
 output1 = [Folder Intcells{file}];
 fid = fopen(output,'w');
 fid1 = fopen(output1,'w');
 %
 for j = 1:nf

 97

 y = (j-1)*delta;
 for k = 1:nf
 %go down rows first then colums
 x = (k-1)*delta;
 if ((bar_x(7,2) <= x) & ...

(x <= bar_x(7,1)))...
 & (((bar_y(7,2) <= y) & ...
 (y <= bar_y(7,3)))...
 | ((bar_y(8,2) <= y) & ...
 (y <= bar_y(8,3)))...
 | ((bar_y(9,2) <= y) & ...
 (y <= bar_y(9,3))))
 z = 250;
 elseif ((bar_x(4,2) <= x) & ...

(x <= bar_x(4,1)))...
 & (((bar_y(4,2) <= y) & ...
 (y <= bar_y(4,3)))...
 | ((bar_y(5,2) <= y) & ...
 (y <= bar_y(5,3)))...
 | ((bar_y(6,2) <= y) & ...
 (y <= bar_y(6,3))))
 z = 250;
 elseif ((bar_x(1,2) <= x) & ...

(x <= bar_x(1,1)))...
 & (((bar_y(1,2) <= y) & ...
 (y <= bar_y(1,3)))...
 | ((bar_y(2,2) <= y) & ...
 (y <= bar_y(2,3)))...
 | ((bar_y(3,2) <= y) & ...
 (y <= bar_y(3,3))))
 z = 250;
 else
 z = 150;
 end
 fprintf(fid,'%8.4f %8.4f %6.2f\n',...

 x,y,z);
 fprintf(fid1,'%6.2f\n',z);
 end
 end
 fclose(fid);
 fclose(fid1);

 %
 case 1
 %
 %Lowest row: row 1

 98

 %

 bar_y(2,1) = ((1+(ma(i)-1)*delta)/2) - 0.0127;
 bar_y(2,2) = bar_y(2,1);
 bar_y(1,4) = bar_y(2,1) - 0.0254;
 bar_y(1,3) = bar_y(1,4);
 bar_y(1,1) = bar_y(1,4) - 0.0254;
 bar_y(1,2) = bar_y(1,1);
 bar_y(2,4) = ((1+(ma(i)-1)*delta)/2) + 0.0127;
 bar_y(2,3) = bar_y(2,4);
 bar_y(3,1) = bar_y(2,4) + 0.0254;
 bar_y(3,2) = bar_y(3,1);
 bar_y(3,4) = bar_y(3,1) + 0.0254;
 bar_y(3,3) = bar_y(3,4);

 %
 %Middle row: row 2
 %

 bar_y(5,1) = ((1+(ma(i)-1)*delta)/2) - 0.0127;
 bar_y(5,2) = bar_y(5,1);
 bar_y(4,4) = bar_y(5,1) - 0.0508;
 bar_y(4,3) = bar_y(4,4);
 bar_y(4,1) = bar_y(4,3) - 0.0254;
 bar_y(4,2) = bar_y(4,1);
 bar_y(5,4) = ((1+(ma(i)-1)*delta)/2) + 0.0127;
 bar_y(5,3) = bar_y(5,4);
 bar_y(6,1) = bar_y(5,4) + 0.0508;
 bar_y(6,2) = bar_y(6,1);
 bar_y(6,4) = bar_y(6,1) + 0.0254;
 bar_y(6,3) = bar_y(6,4);

 %
 %Top row: row 3
 %

 bar_y(8,1) = ((1+(ma(i)-1)*delta)/2) - 0.0127;
 bar_y(8,2) = bar_y(8,1);
 bar_y(7,4) = bar_y(8,1) - 0.1016;
 bar_y(7,3) = bar_y(7,4);
 bar_y(7,1) = bar_y(7,4) - 0.0254;
 bar_y(7,2) = bar_y(7,1);
 bar_y(8,4) = ((1+(ma(i)-1)*delta)/2) + 0.0127;
 bar_y(8,3) = bar_y(8,4);
 bar_y(9,1) = bar_y(8,4) + 0.1016;
 bar_y(9,2) = bar_y(9,1);

 99

 bar_y(9,4) = bar_y(9,1) + 0.0254;
 bar_y(9,3) = bar_y(9,4);

 %
 %Write out data file
 %
 % Define the output file for each case
 %

 file = (i-1)*3 + bar_w;
 output = [Folder Barcells{file}];
 output1 = [Folder Intcells{file}];
 fid = fopen(output,'w');
 fid1 = fopen(output1,'w');
 %
 for j = 1:nf
 y = (j-1)*delta;
 for k = 1:nf
 %go down rows first then colums
 x = (k-1)*delta;
 if ((bar_x(7,2) <= x) & ...

(x <= bar_x(7,1)))...
 & (((bar_y(7,2) <= y) & ...
 (y <= bar_y(7,3)))...
 | ((bar_y(8,2) <= y) & ...
 (y <= bar_y(8,3)))...
 | ((bar_y(9,2) <= y) & ...
 (y <= bar_y(9,3))))
 z = 250;
 elseif ((bar_x(4,2) <= x) & ...

(x <= bar_x(4,1)))...
 & (((bar_y(4,2) <= y) & ...
 (y <= bar_y(4,3)))...
 | ((bar_y(5,2) <= y) & ...
 (y <= bar_y(5,3)))...
 | ((bar_y(6,2) <= y) & ...
 (y <= bar_y(6,3))))
 z = 250;
 elseif ((bar_x(1,2) <= x) & ...

(x <= bar_x(1,1)))...
 & (((bar_y(1,2) <= y) & ...
 (y <= bar_y(1,3)))...
 | ((bar_y(2,2) <= y) & ...
 (y <= bar_y(2,3)))...
 | ((bar_y(3,2) <= y) & ...
 (y <= bar_y(3,3))))

 100

 z = 250;
 else
 z = 150;
 end
 fprintf(fid,'%8.4f %8.4f %6.2f\n',...

 x,y,z);
 fprintf(fid1,'%6.2f\n',z);
 end
 end
 fclose(fid);
 fclose(fid1);
 %end switch on bar-width
 end
 %end of bar_w cases
 end
% end of distance cases
end

 101

C3. FORTRAN 90 Convolution Program

C3.1 Program CONVOLVE.F90

!**
!
!CONVOLVE.F90
!
! This program implements a fast convolution algorithm on simulated
! ground truth bar code data. The objects of the program are to test
! the effect of various convolution filters on the ground truth
! data and produce blurred images of bar code data that can be
! compared to bar code images acquired by LADAR scans. The program
! assumes the existence of a square array ground truth data set,f, and
! a square array, h, representing the convolution filter. The
! program produces a blurred array by performing a finite convolution
! summation.
!
! Let
! ma = side length of filter (integer),
! nf = side length of ground truth image (integer),
! ng = side length of filtered image (integer).
!
! These quantities are related by the formula
!
! nf = ng + ma - 1
!
! Note that this implies that ng < nf.
!
! The convolution filter is given by a matrix
!
! h(ma,ma) = filter values
!
! The ground truth image is assumed to be given by a function
! defined at equally spaced points f(y(i),z(j)) where
!
! y(1) < y(2) < ... < y(nf)
! z(1) < z(2) < ... < z(nf)
!
! The resulting blurred image will be given by a function g(Y(p),Z(q))
! where
!
! Y(1) < Y(2) < ... < Y(ng)
! Z(1) < Z(2) < ... < Z(ng)
!

 102

! The finite convolution summation is then given by
!
! q+ma-1 p+ma-1
! xxxxxx xxxxxx
! x x
! g(Y(p),Z(q)) = x x h(Y(p)-y(i),Z(q)-z(j))*f(y(i),z(j))
! x x
! xxxxxx xxxxxx
! j=q i=p
!
! In the computation the functions f and g will be written as
! elongated vectors x and b and the convolution filter h will be
! represented in its matrix form.
!
! INPUT File Formats:
!
! 1. Parameter input file name is Convolve_Input.txt with format
!
! Line 1: ma, ng Read as two integers (space 4dig space 4dig)
! Line 2: ma Read as a character string, (4 characters)
! Line 3: Filter (Beam) matrix file name (Up to 120 character string)
! Line 4: Blurred image vector file name (Up to 120 character string)
! Line 5: Name of ground truth image (Up to 120 character string)
! Put a CR/LF (ENTER) at the end of line 5
!
! 2. Filter input file format:
!
! ma rows by ma columns. Each entry in G15.6.
!
! 3. Ground truth file format:
!
! Three columns in (F8.4,F9.4,F7.2). Column 1 is the y value, column 2
! is the z value, and column 3 is the image intensity value.
!
! Author:
! David E. Gilsinn
! Mathematical and Computational Sciences Division
! National Institute of Standards and Technology
! 100 Bureau Drive, Stop 8910
! Gaithersburg, MD 20899-8910
! e-mail: dgilsinn@nist.gov
!
!**
!
 PROGRAM Convolve
 IMPLICIT NONE

 103

!
!**
!
!
! The object of this program is to test the convolution algorithm
! on known bar code ground truth images.
!
! Parameter specifications:
!
 CHARACTER(*), PARAMETER :: Folder = "c:\Convolve\"
!
!
! Other varaible specifications:
!
! x is a vector representing the ground truth image stored by columns
! of length nf*nf. b is the filtered image stored by columns of length
! ng*ng.
!

 INTEGER :: p, l, k, q ,e, ma, nf, ng
 INTEGER :: i, j, n, m, Inputstatus, Memorystatus, nout
 REAL, DIMENSION(:,:), ALLOCATABLE :: h
 REAL, DIMENSION(:), ALLOCATABLE :: y1, z1, x, b
 REAL :: xx, yy,z, sum, residnorm, maxb, minb
 CHARACTER(120) :: BeamMatrix, GroundTruth, Beam, BeamL, GT, GTL,&
 FilteredVect, Filtered, FilteredL, Output, &
 OutputL,Printfile, Reconstruct, ReconstructL,&
 PredGroundTruth, Input, InputL
 CHARACTER(4) :: CharMa, CharMaR
 CHARACTER(12) :: BeamFMT
!
! Get the parameter input file. Display input parameters.
!
 Input = Folder//"Convolve_Input.txt"
 InputL = ADJUSTL(Input)
 OPEN(UNIT = 2, FILE = InputL, IOSTAT = Inputstatus)
 IF (Inputstatus > 0)&
 STOP "*** Error on opening unit 2 Input file ***"
 READ(UNIT = 2, FMT = '(2I5)') ma, ng
 Print *,ma,ng
 READ(UNIT = 2, FMT = '(A4)') CharMa
 Print *,CharMa
 READ(UNIT = 2, FMT = '(A120)') Beam
 Print *, Beam
 READ(UNIT = 2, FMT = '(A120)') Filtered
 Print *, Filtered

 104

 READ(UNIT = 2, FMT = '(A120)') Reconstruct
 Print *, Reconstruct
 CLOSE(2)
 BeamL = ADJUSTL(Beam)
 FilteredL = ADJUSTL(Filtered)
 OutputL = ADJUSTL(Output)
 ReconstructL = ADJUSTL(Reconstruct)
 CharMaR = ADJUSTR(CharMa)
 BeamMatrix = Folder//BeamL
 print *,'BeamMatrix = ',BeamMatrix
 FilteredVect = Folder//FilteredL
 PredGroundTruth = Folder//ReconstructL
 BeamFMT = '('//CharMaR//'G15.6)'
!
! Allocate arrays
!
! Get lengths of ground truth image vector, n, and filtered image
! vector, m.
!
 nf = ng + ma -1
 n = nf*nf
 m = ng*ng
 ALLOCATE(h(ma,ma), y1(n), z1(n), x(n), b(m), STAT = Memorystatus)
 IF (Memorystatus /= 0) STOP "*** Memory allocation error ***"
!
! Get the filter data as a matrix.
!
 OPEN(UNIT=4,FILE = BeamMatrix,STATUS = 'OLD',IOSTAT = Inputstatus)
 IF (Inputstatus > 0) THEN
 PRINT *, BeamMatrix
 STOP "*** Error on opening unit 4 ***"
 END IF
 DO i = 1,ma
 READ(UNIT = 4, FMT = BeamFMT) (h(i,j), j = 1,ma)
 END DO
 CLOSE(4)
!
! Get the ground truth image image
!
 OPEN(UNIT = 6, FILE = PredGroundTruth, STATUS = 'OLD')
 i = 0
 DO
 READ(UNIT = 6,FMT = '(F8.4,F9.4,F7.2)',IOSTAT = Inputstatus)&
 yy, z, xx
 IF (Inputstatus > 0) STOP "*** Input Error on Unit 6 ***"
 IF (Inputstatus < 0) EXIT ! End of file

 105

 i = i + 1
 y1(i) = yy ! y value of data points (Not used)
 z1(i) = z ! z value of data points (Not used)
 x(i) = xx
 END DO
 CLOSE(6)
 Print *, 'gt image. Next integers should be equal.', i, n
!
! Perform the convolution algorithm
!
 DO p = 1,ng ! Loop over each y block of ng elements
 DO l = 1,ng ! Local row number within y block
 j = (p-1)*ng + l
 sum = 0.0
 DO k = 0,ma-1 ! Loop over x blocks of nf elements
 DO q = 0,ma-1 ! Form the inner product for row j
 e = (p + k - 1)*nf +l + q
 sum = sum + h(ma-q,ma-k)*x(e)

 END DO
 END DO
 b(j) = sum
 END DO
 END DO
!
! Scale the output intensities to between 140 and 255
! Write the output as a vector for Matlab graphics
!
 minb = MINVAL(b)
 maxb = MAXVAL(b)

 OPEN(UNIT = 8,FILE = FilteredVect, STATUS = 'UNKNOWN')
 DO i = 1,m
 b(i) = ((255.0-140.0)/(maxb-minb))*(b(i)-maxb) + 255.0
 WRITE (UNIT = 8, FMT = '(1X, G12.6)') b(i)
 END DO
 CLOSE(8)
!
! Deallocate memory
!
 DEALLOCATE(h, y1, z1, x, b)
!

END PROGRAM Convolve

 106

C3.2 Sample Input Parameter File

 11 095
 11
spot_quarterin_10m.txt
Quarterin_conv_Bar_1in_10m_95x95.txt
yzint_Bar_1in_10m_data_105x105.txt

 107

C4. FORTRAN 90 Deconvolution Program

C4.1 Program DECONVOLVE.F90

!**
!
!DECONVOLVE.F90
!
! This program reconstructs ground truth bar code images from
! blurred images obtained from LADAR scans. The program
! assumes the existence of a square array scanned data set,g, and
! a square array, h, representing the convolution filter. The
! program produces a best estimate array of ground truth
! by applying an iterative least squares algorithm to a
! finite convolution summation. It is an inverse problem.
!
! Let
! ma = side length of filter (integer),
! nf = side length of ground truth image (integer),
! ng = side length of filtered image (integer).
!
! These quantities are related by the formula
!
! nf = ng + ma - 1
!
! Note that this implies that ng < nf.
!
! The convolution filter is given by a matrix
!
! h(ma,ma) = filter values
!
! The ground truth image is assumed to be given by a function
! defined at equally spaced points f(y(i),z(j)) where
!
! y(1) < y(2) < ... < y(nf)
! z(1) < z(2) < ... < z(nf)
!
! This will be the function reconstructed.
!
! The scanned blurred image will be given by a function g(Y(p),Z(q))
! where
!
! Y(1) < Y(2) < ... < Y(ng)
! Z(1) < Z(2) < ... < Z(ng)
!

 108

! The finite convolution summation is then given by
!
! q+ma-1 p+ma-1
! xxxxxx xxxxxx
! x x
! g(Y(p),Z(q)) = x x h(Y(p)-y(i),Z(q)-z(j))*f(y(i),z(j))
! x x
! xxxxxx xxxxxx
! j=q i=p
!
! In the computation the functions f and g will be written as
! elongated vectors x and b and the convolution filter h will be
! represented in its matrix form. The object is to use the filter h
! and the scanned data g to obtain a best estimate of f.
!
! INPUT File Formats:
!
! 1. Parameter input file name is LSQR_Input.txt with format
!
! Line 1: ma, ng Read as two integers, FORMAT (2I5)
! i.e. space 4dig space 4dig
! Line 2: ma Read as a character string, FORMAT (A4)
! Line 3: Beam matrix file name Character string FORMAT (A120)
! Line 4: Filtered image vector file name Character string
! FORMAT (A120) (file in F6.2)
! Line 5: Name of LSQR output file FORMAT (A120)
! Line 6: Name of predicted ground truth image FORMAT (A120)
! Line 7: damp - regularization parameter FORMAT (F5.3)
! Line 8: atol - relative error in data defining A matrix.
! For 3 figures 0.001. FORMAT (F8.6)
! Line 9: btol - relative error in data defining right hand b.
! For 3 figures 0.001. FORMAT (F8.6)
! Put a CR/LF (ENTER) at the end of line 9
!
!
! 2. Filter input file format:
!
! ma rows by ma columns. Each entry in G15.6.
!
! 3. Scanned data file format:
!
! Three columns in (F8.4,F9.4,F7.2). Column 1 is the y value, column 2
! is the z value, and column 3 is the image intensity value.
!
! Subroutines required:
!

 109

! 1. SUBROUTINE Aprod((Mode, m, n, x, y, Leniw, Lenrw, Iw, Rw)
! This subroutine computes the following:
! If Mode = 1, set y = y + H*x
! If Mode = 2, set x = x + (H^T) * y
! where H^T is the transpose of H formed from h.
! Leniw, Lenrw are the length of the working arrays Iw, Rw
!
! 2.SUBROUTINE LSQR(M,N,APROD,DAMP,
! 1 LENIW,LENRW,IW,RW,
! 2 U,V,W,X,SE,
! 3 ATOL,BTOL,CONLIM,ITNLIM,NOUT,
! 4 ISTOP,ANORM,ACOND,RNORM,ARNORM,XNORM)
! This subroutine performs the iterative least squares algorithm.
! For a description of the algorithm see
! (a) Paige, C., Saunders, M, "LSQR: An algorithm for sparse linear
! equations and sparse least squares", ACM Transactions on
! Mathematical Software, Vol 8, No. 1, 1982, 43-71.
! (b) Paige, C., Saunders, M, "Algorithm 583, LSQR: Sparse linear
! equations and least squares problems", ACM Transactions on
! Mathematical Software, Vol 8, No. 2, 1982, 195-209.
!
! The subroutine can be obtained from the ACM web site at
! http://www.acm.org/calgo/contents/. It is not included in
! the current code publication for copyright reasons.
!
! Author:
! David E. Gilsinn
! Mathematical and Computational Sciences Division
! National Institute of Standards and Technology
! 100 Bureau Drive, Stop 8910
! Gaithersburg, MD 20899-8910
! e-mail: dgilsinn@nist.gov
!
!**
 MODULE LSQR_global
!***
!
! This module provides access to the quantities ma, nf, ng, h from
! the subroutines.
!
!***
!
 INTEGER :: ma, nf, ng
 REAL, DIMENSION(:,:), ALLOCATABLE :: h
!
 END MODULE LSQR_global

 110

!
!***
!
! The main program DECONVOLVE begins here
!
!***
 PROGRAM Deconvolve
 USE LSQR_global
 IMPLICIT NONE
 EXTERNAL Aprod, LSQR
!***
!
! Parameter specifications
!
 INTEGER, PARAMETER :: Leniw = 1, Lenrw = 1
 CHARACTER(*), PARAMETER :: Folder = "c:\Deconvolve\"
!
! Other specifications
!
! x is a vector representing the ground truth image stored by columns of
! length nf*nf. b is the filtered image stored by columns of length ng*ng.
!
 INTEGER, DIMENSION(Leniw) :: Iw

INTEGER :: i, j, n, m, Mode, Inputstatus, Memorystatus, nout, istop, mout(16),&
 itnlim

 INTEGER, DIMENSION(8) :: Val
 REAL, DIMENSION(Lenrw) :: Rw
 REAL :: xx, atol, btol, conlim, damp, anorm, acond, rnorm, arnorm, xnorm, y,z
 REAL, DIMENSION(:), ALLOCATABLE :: x, b, u, v, w, se
 CHARACTER(120) :: BeamMatrix, GroundTruth, Beam, BeamL, GT, GTL,&

Input, InputL,&
 FilteredVect, Filtered, FilteredL, Output, OutputL,&
 Printfile, Reconstruct, ReconstructL,PredGroundTruth
 CHARACTER(4) :: CharMa, CharMaR
 CHARACTER(12) :: BeamFMT
 CHARACTER(LEN=12) :: Real_clock(3)
!
! Read the parameter input file
!
 Input = Folder//"LSQR_Input.txt"
 InputL = ADJUSTL(Input)
 OPEN(UNIT = 2, FILE = InputL, IOSTAT = Inputstatus)
 IF (Inputstatus > 0) STOP "*** Error on opening unit 2 Input file ***"
 READ(UNIT = 2, FMT = '(2I5)') ma, ng
 Print *,ma,ng
 READ(UNIT = 2, FMT = '(A4)') CharMa

 111

 Print *,CharMa
 READ(UNIT = 2, FMT = '(A120)') Beam
 Print *, Beam
 READ(UNIT = 2, FMT = '(A120)') Filtered
 Print *, Filtered
 READ(UNIT = 2, FMT = '(A120)') Output
 Print *, Output
 READ(UNIT = 2, FMT = '(A120)') Reconstruct
 Print *, Reconstruct
 READ(UNIT = 2, FMT = '(F5.3)') damp
 Print *, damp
 READ(UNIT = 2, FMT = '(F8.6)') atol
 Print *, atol
 READ(UNIT = 2, FMT = '(F8.6)') btol
 Print *, btol
 CLOSE(2)
 BeamL = ADJUSTL(Beam)
 FilteredL = ADJUSTL(Filtered)
 OutputL = ADJUSTL(Output)
 ReconstructL = ADJUSTL(Reconstruct)
 CharMaR = ADJUSTR(CharMa)
 BeamMatrix = Folder//BeamL
 FilteredVect = Folder//FilteredL
 Printfile = Folder//OutputL
 PredGroundTruth = Folder//ReconstructL
 BeamFMT = '('//CharMaR//'F15.6)'
!
! Allocate arrays
!
! Get lengths of ground truth image vector, n, and filtered image vecctor, m.
!
 nf = ng + ma -1
 n = nf*nf
 m = ng*ng
 ALLOCATE(h(ma,ma), x(n), b(m), u(m), v(n), w(n), se(n), STAT =
Memorystatus)
 IF (Memorystatus /= 0) STOP "*** Memory allocation error ***"
!
! Get the filter data as a matrix.
!
 OPEN(UNIT = 4,FILE = BeamMatrix, STATUS = 'OLD', IOSTAT = Inputstatus)
 IF (Inputstatus > 0) THEN
 PRINT *, BeamMatrix
 STOP "*** Error on opening unit 4 ***"
 END IF
 DO i = 1,ma

 112

 READ(UNIT = 4, FMT = BeamFMT) (h(i,j), j = 1,ma)
 Print *, (h(i,j), j = 1,ma)
 END DO
 CLOSE(4)
!
! Get the scanned data image
!
 OPEN(UNIT = 6, FILE = FilteredVect, STATUS = 'OLD')
 i = 0
 DO
 READ(UNIT = 6,FMT = '(F8.4,F9.4,F7.2)',&

IOSTAT = Inputstatus) y, z, xx
 IF (Inputstatus > 0) STOP "*** Input Error on Unit 6 ***"
 IF (Inputstatus < 0) EXIT ! End of file
 i = i + 1
 b(i) = xx
 END DO
 CLOSE(6)
 Print *, 'Filtered image', i, m
!
! Assign b to u for input to LSQR. Note u is overwritten.
!
 u = b
!
! Dummy values. Work arrays not used.
!
 Iw(1) = 0
 Rw(1) = 0.0
!
! Setting up parameters for LSQR. Open an internal file
! used by LSQR for diagnostic output and a file to save
! the reconstructed image, x. Time calls are made for
! diagnostic information.
!
!
 nout = 7
 OPEN(UNIT = nout, FILE = Printfile, STATUS = 'UNKNOWN')
 OPEN(UNIT = 8, FILE = PredGroundTruth, STATUS = 'UNKNOWN')
 conlim = 1.0e+7
 itnlim = 10
 CALL DATE_AND_TIME(Real_clock(1), Real_clock(2),&
 Real_clock(3), Val)
 Print *, Val(1), Val(2) , Val(3), Val(5), Val(6),&
 Val(7), Val(8)
 Call LSQR(m,n,Aprod,damp,Leniw,Lenrw,Iw,Rw,u,v,w,x,se,&
 atol,btol,conlim,itnlim,nout,istop,anorm,&

 113

 acond,rnorm,arnorm,xnorm)
 CALL DATE_AND_TIME(Real_clock(1), Real_clock(2),&
 Real_clock(3), Val)
 PRINT *, Val(1), Val(2) , Val(3), Val(5), Val(6),&
 Val(7), Val(8)
 DO i = 1,n
 WRITE (UNIT = 8, FMT = '(1X, F12.6)') x(i)
 END DO
!
 CLOSE(nout)
 CLOSE(8)
!
! Deallocate memory
!
 DEALLOCATE(h, x, b, u, v, w, se)
!
!
END PROGRAM Deconvolve
!**
!
 SUBROUTINE Aprod (Mode, m, n, x, y, Leniw, Lenrw, Iw, Rw)

! This version of Aprod performs a convolution of a filter matrix, h,
! with an image vector, x. It also applies the transpose of h to a
! filtered image vector y. The storage of images is by columns.
!
! The image vector is stored in x of length n. It is generated from
! a square image of side nf so that n = nf*nf. If f(i,j), i, j = 1,nf
! is the image, the structure of x is as follows:
! x(1) = f(1,1), x(2) = f(2,1), ..., x(nf) = f(nf, 1),
! x(nf + 1) = x(1, 2), ..., x(2*nf) = x(nf, 2),...,
! x(nf*nf) = f(nf, nf).
!
! The blurred image vector is stored in y of length m. It is generated
! from a square image of side ng so that m = ng*ng. If, g(i, j),
! i, j = 1, ng is the blurred image, the ! structure of y is as follows:
! y(1) = g(1, 1), y(2) = g(2, 1), ..., y(ng) = g(ng, 1),
! y(ng + 1) = g(1, 2), ..., y (2*ng) = ! g(ng, 2), ...,
! y(ng*ng) = g(ng, ng)
!
! The matrix A is the sparse block Toeplitz matrix formed from the
! filter matrix, h, of size ma x ma. In this subroutine the sparse
! matrix is never created. Outputs are created by rows using the filter
! matrix. This reduces storage requirements.
!
! Aprod performs the following function:

 114

!
! If Mode = 1, set y = y + A*x
! If Mode = 2, set x = x + (A^T) * y
!
! Iw and Rw are work arrays of length Leniw and Lenrw respectively.
! They are not used in this version of Aprod
!
! Module LSQR_global contains h, ma, ng, nf
!
!***
 USE LSQR_global
!
!
 IMPLICIT NONE
 INTEGER :: n, m, Leniw, Lenrw, Mode
 INTEGER :: p, l, j, k, q, e
 REAL :: x(n), y(m), Iw(Leniw), Rw(Lenrw)
 REAL :: sum, yj
!
!
!
!
!
!**
!
! Select the mode
!
!**
!
 IF (mode == 1) THEN
!
!**
!
! Mode = 1 -- Set y = y + A*x
!
!**
!
 DO p = 1,ng ! Loop over each y block of ng elements
 DO l = 1,ng ! Local row number within y block
 j = (p-1)*ng + l
 sum = 0.0
 DO k = 0,ma-1 ! Loop over x blocks of nf elements
 DO q = 0,ma-1 ! Form the inner product for row j
 e = (p + k - 1)*nf +l + q
 sum = sum + h(ma-q,ma-k)*x(e)

 115

 END DO
 END DO
 y(j) = y(j) + sum ! Add A*x to y for row j
 END DO
 END DO
!
 ELSE
!
!**
!
! Mode = 2 -- Set x = x + (A^T)*y
!
!**
!
 DO p = 1,ng
 DO l = 1,ng
 j = (p-1)*ng + l
 yj = y(j)
 DO k = 0,ma-1
 DO q = 0,ma-1
 e = (p+k-1)*nf + l + q
 x(e) = x(e) + h(ma-q,ma-k)*yj
 END DO
 END DO
 END DO
 END DO
!
 END IF
!
 END SUBROUTINE Aprod

C4.2 Sample Input Parameter File

 11 095
11
Beam_10m_gaus_sig06_3x7.txt
yzint_a_2in_10m_crop_95.txt
LSQR_decon_out_2in_10m.txt
decon_gaussig06_3x7_a_2in_10m_gt.txt
0.001
0.000001
0.000001

 116

C5. FORTRAN 90 Program to Reverse Engineer the Beam Spread
Function

C5.1 Matrix alignment

In order to apply the LSQR algorithm to the reverse engineering problem the matrices
involved need to be stored in such a way that they align properly. As in the convolution
and deconvolution programs the scanned data, g, is stored by columns. That is

(1,1)
(2,1)

(,1)
(1,2)

(5.1)
(, 2)

(1,)

(,)

g
g

g ng
g

g C
g ng

g ng

g ng ng

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Similarly the unknown filter matrix, H, is also stored in vector form as

(1,1)
(2,1)

(,1)
(1,2)

(5.2)
(, 2)

(1,)

(,)

H
H

H ma
H

H C
H ma

H ma

H ma ma

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

The ground truth image is also assumed to be stored in column form as

 117

2

(1) (1,1)
(2) (2,1)

() (,1)
(1) (1,2)

(5.3)
(2) (, 2)

((1)) (, 1)

() (,)

f F
f F

f nf F nf
f nf F

f C
f nf F nf

f nf nf F nf nf

f nf F nf nf

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

In order to satisfy the requirements of LSQR, the ground truth image has to be stored as a
matrix for use in a modified version of the Aprod subroutine. The ground truth image is
stored in a matrix of size A(ng2, ma2).

(1) () (1) () ((1) 1) ((1))
(2) (1) (2) (1) ((1) 2) ((1) 1)

() ((1)) () ((1)) ((1)) ((1)

f f ma f nf f nf ma f ma nf f ma nf ma
f f ma f nf f nf ma f ma nf f ma nf ma

f ng f ng ma f nf ng f nf ng ma f ma nf ng f ma nf ng

A

+ + − + − +
+ + + + − + − + +

+ − + + + − − + − + +

=

(1))
(1) (1 (1)) (2 1) (2 1 (1)) (() 1) (() 1 (1))

() ((1)) (2) (2 (1)) (()) (() (1))
(2 1) (2 1 (1)

ma
f nf f nf ma f nf f nf ma f ma nf f ma nf ma

f nf ng f nf ng ma f nf ng f nf ng ma f ma nf ng f ma nf ng ma
f nf f nf ma

−
+ + + − + + + − + + + −

+ + + − + + + − + + + −
+ + + −) (3 1) (3 1 (1)) ((1) 1) ((1) 1 (1))

(2) (2 (1)) (3) (3 (1)) ((1)) ((1) (1))

((1) 1) ((1) 1 (

f nf f nf ma f ma nf f ma nf ma

f nf ng f nf ng ma f nf ng f nf ng ma f ma nf ng f ma nf ng ma

f ng nf f ng nf ma

+ + + − + + + + + −

+ + + − + + + − + + + + + −

− + − + + −1)) (() 1) (() 1 (1)) ((1 1) 1) ((1 1) 1 (1))

((1)) ((1) (1)) (()) (() (1)) ((1 1)) ((1 1) (

f ng nf f ng nf ma f ng ma nf f ng ma nf ma

f ng nf ng f ng nf ng ma f ng nf ng f ng nf ng ma f ng ma nf ng f ng ma nf ng ma

+ + + − − + − + − + − + + −

− + − + + − + + + − − + − + − + − + + −

(5.4)

1))

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

The storage is accomplished in the main program by the following portion of code. The
transpose, AT, is also computed.

DO cc = 0, ng-1
 DO dd = 0, ng-1
 DO ee = 0, ma-1
 DO ff = 1,ma
 k1 = cc*ng+dd+1
 k2 = ee*ma+ff
 k3 = (ee+cc)*nf + dd + ff
 A(k1,k2) = F(k3)
 END DO
 END DO
 END DO
END DO
DO cc = 1,m
 DO dd = 1,ma2

 118

 AT(dd,cc) = A(cc,dd)
 END DO
END DO

C5.2 SPREAD_FUNCTION.F90 program

!**
! SPREAD_FUNCTION.F90
!
! The object of this program is to construct by a least squares
! algorithm with residual correction an estimate of the kernel
! matrix that generates a given blurred image from a known ground
! truth image.
!
! INPUT FILES:
!
! 1. Parameter input file format
!
! Line 1: ma, ng Read as two integers, FORMAT 2I5 i.e. space
! 4dig space 4dig
! Line 2: Charma Character form of ma
! Line 3: Ground Truth file name Character string (file in F6.2)
! Line 4: maximum number of kernel update iterations (at least 1
! is performed)
! Line 5: Filtered image vector file name Character string
! (file in F8.4,F9.4,F7.2)
! Line 6: Name of LSQR output file
! Line 7: Name of predicted spread function
! Line 8: damp - regularization parameter
! Line 9: atol - relative error in data defining A matrix.
! For 3 figures 0.001.
! Line 10: btol - relative error in data defining right hand b.
! For 3 figures 0.001
! Put a CR/LF (ENTER) at the end of line 10
!
! 2. Filtered or scanned file image
!
! The file is assumed to be in three columns in (F8.4,F9.4,F7.2).
! Column 1 is the y value, column 2 is the z value, and column 3
! is the image intensity value.
!
! 3, Ground truth image
!
! The file is assumed to be in three columns in (F8.4,F9.4,F7.2).
! Column 1 is the y value, column 2 is the z value, and column 3

 119

! is the image intensity value.
!
! Subroutines Required: LSQR, Aprod, Maxnorm
!
! Author:
! David E. Gilsinn
! Mathematical and Computational Sciences Division
! National Institute of Standards and Technology
! 100 Bureau Drive, Stop 8910
! Gaithersburg, MD 20899-8910
!
! e-mail: dgilsinn@nist.gov
!
!**
!
! This module provides global access to ma, nf, ng, A, AT
!
! where
!
! ma = side length of filter,
! nf = side length of ground truth image
! ng = side length of filtered image, nf = ng + ma -1
! A(ng*ng,ma*ma) - Allocatable Ground truth as a matrix
! AT(ma*ma,ng*ng) - Allocatable transpose of ground truth
!
!**
 MODULE LSQR_global
!**
!
 INTEGER :: ma, nf, ng
 REAL, DIMENSION(:,:), ALLOCATABLE :: A, AT
!
 END MODULE LSQR_global
!
!***
!
! Main Program for spread_function
!
!***
 PROGRAM Spread_Function
 USE LSQR_global
 IMPLICIT NONE
 EXTERNAL Aprod, LSQR
!
!
! Parameter specifications

 120

!
 INTEGER, PARAMETER :: Leniw = 1, Lenrw = 1
 CHARACTER(*), PARAMETER :: Folder = "c:\Spread_function\"
!
 character length 15
!
! Other specifications
!
! F is a vector representing the ground truth image stored by columns of
! length nf*nf.
! b is the filtered image stored by columns of length ng*ng.
! u, v , w, se are working arrays for LSQR
! h is a matrix representing the LADAR optics kernel or filter.
!
 REAL, DIMENSION(:), ALLOCATABLE :: F, x, b, u, v, w, se, y, tmp, e, resid
 REAL, DIMENSION(:,:), ALLOCATABLE :: h
 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: r1, r2
!
 REAL, DIMENSION(Leniw) :: Iw
 REAL, DIMENSION(Lenrw) :: Rw
 REAL :: xx, atol, btol, conlim, damp, anorm, acond, rnorm, arnorm, xnorm,&

 x1, x2
 REAL :: xmaxnorm, residnorm
 INTEGER :: i, j, n, m, Mode, Inputstatus, Memorystatus, nout, istop, mout(16),&
 itnlim, ma2, cc, dd, ee, ff, k1, k2, k3, k, iter, maxiter
 CHARACTER(120) :: BeamMatrix, BeamVector, GT, GTL, Input, InputL,&
 FilteredVect, &
 Printfile, Reconstruct,
ReconstructL,PredGroundTruth,&
 GroundTruthL, BarCodes
 CHARACTER(50) :: Beam, BeamL, Filtered, FilteredL, GroundTruth,&

Output, OutputL
 CHARACTER(4) :: CharMa, CharMaR
 CHARACTER(12) :: BeamFMT

!
! Get the parameter input file.
!
 Input = Folder//"LSQR_Spread_Input.txt"
 InputL = ADJUSTL(Input)
 OPEN(UNIT = 2, FILE = InputL, IOSTAT = Inputstatus)
 IF (Inputstatus > 0) STOP "*** Error on opening unit 2 Input file ***"
 READ(UNIT = 2, FMT = '(2I5)') ma, ng
 Print *,ma,ng
 READ(UNIT = 2, FMT = '(A4)') CharMa
 Print *,charma

 121

 READ(UNIT = 2, FMT = '(I4)') maxiter
 Print *, maxiter
 READ(UNIT = 2, FMT = '(A50)') GroundTruth
 Print *, Beam
 READ(UNIT = 2, FMT = '(A50)') Filtered
 Print *, Filtered
 READ(UNIT = 2, FMT = '(A50)') Output
 Print *, Output
 READ(UNIT = 2, FMT = '(A50)') Beam
 Print *, Reconstruct
 READ(UNIT = 2, FMT = '(F5.3)') damp
 Print *, damp
 READ(UNIT = 2, FMT = '(F8.6)') atol
 Print *, atol
 READ(UNIT = 2, FMT = '(F8.6)') btol
 Print *, btol
 CLOSE(2)
 BeamL = ADJUSTL(Beam)
 BeamMatrix = Folder//'Mat_'//BeamL
 BeamVector = Folder//'Vect_'//BeamL
 FilteredL = ADJUSTL(Filtered)
 OutputL = ADJUSTL(Output)
 GroundTruthL = ADJUSTL(GroundTruth)
 FilteredVect = Folder//FilteredL
 Printfile = Folder//OutputL
 BarCodes = Folder//GroundTruthL
 CharMaR = ADJUSTR(CharMa)
 BeamFMT = '('//CharMaR//'G15.6)'
!
! Allocate arrays
!
! Get lengths of ground truth image vector, n, and filtered image vecctor, m.
!
 nf = ng + ma -1
 ma2 = ma*ma
 n = nf*nf
 m = ng*ng
 Print *, nf, ma2, n, m
 ALLOCATE(A(m,ma2), AT(ma2,m), x(ma2), b(m), u(m), v(ma2), w(ma2),&
 se(ma2), F(n), h(ma,ma), y(m),tmp(m),e(ma2), r1(m), &
 r2(m), resid(m), STAT = Memorystatus)
 IF (Memorystatus /= 0) STOP "*** Memory allocation error ***"
 Print *, 'Memory allocated'
!
! Read ground truth image
!

 122

 OPEN(UNIT = 8, FILE = BarCodes, STATUS = 'UNKNOWN')
 Print *, 'Barcode file = ', BarCodes
 i = 0
 DO
 READ (UNIT = 8, FMT = '(F8.4,F9.4,F7.2)', IOSTAT = Inputstatus)
x1,x2, xx
 IF (Inputstatus > 0) STOP "*** Input Error on Unit 8: Barcodes ***"
 IF (Inputstatus < 0) EXIT ! End of file
 i = i+1
 F(i) = xx
 END DO
 CLOSE(8)
 Print *, 'Barcodes', i, n

!
! Get the LADAR scanned or filtered image
!
 OPEN(UNIT = 6, FILE = FilteredVect, STATUS = 'UNKNOWN')
 i = 0
 DO
! READ(UNIT = 6,FMT = '(F13.6)',IOSTAT = Inputstatus) xx

READ (UNIT = 6, FMT = '(F8.4,F9.4,F7.2)', IOSTAT =&
 Inputstatus)x1,x2, xx

 IF (Inputstatus > 0) STOP "*** Input Error on Unit 6 ***"
 IF (Inputstatus < 0) EXIT ! End of file
 i = i + 1
 b(i) = xx
 END DO
 CLOSE(6)
 Print *, 'Filtered image', i, m
!
! Convert Ground truth vector F to matrices A and AT
!
 DO cc = 0, ng-1
 DO dd = 0, ng-1
 DO ee = 0, ma-1
 DO ff = 1,ma
 k1 = cc*ng+dd+1
 k2 = ee*ma+ff
 k3 = (ee+cc)*nf + dd + ff
 A(k1,k2) = F(k3)
 END DO
 END DO
 END DO
 END DO
 DO cc = 1,m

 123

 DO dd = 1,ma2
 AT(dd,cc) = A(cc,dd)
 END DO
 END DO
!
! Assign b to u for initial input to LSQR. Note u is overwritten.
!
 u = b
! Make b double precision
 r1 = b
!
! Dummy values. Work arrays not used.
!
 Iw(1) = 0
 Rw(1) = 0.0
!
! Setting up parameters for LSQR
!
!
 nout = 7
 OPEN(UNIT = nout, FILE = Printfile, STATUS = 'UNKNOWN')
 conlim = 1.0e+7
 itnlim = 50
!
 iter = 0
!
! Begin the iterative refinement procedure to estimate the filter
!
! Determine initial kernel guess x on iteration 0
!
 Print *, 'Initial kernel and Residual Correction, Iteration = ', iter
 Call LSQR(m,ma2,Aprod,damp,Leniw,Lenrw,Iw,Rw,u,v,w,x,se,&
 atol,btol,conlim,itnlim,nout,istop,anorm,&
 acond,rnorm,arnorm,xnorm)
!
! Compute residual
!
 Mode = 1
 y = 0.0
 Call Aprod(Mode, m,ma2,x,y,Leniw,Lenrw, Iw,Rw)
 r2 = y ! Make y = Ax double precision
 resid = r1 - r2 ! r = b - Ax
 tmp = resid
 residnorm = MAXNORM(m,tmp)
 Print *, 'Residual maxnorm, iteration 0', residnorm
!

 124

! pass in the initial residual to start the updates
!
 u = resid
!
 DO
 iter = iter + 1
!
! get the correction term and update the beam vector
! i.e. solve Ae = r
!
 Call LSQR(m,ma2,Aprod,damp,Leniw,Lenrw,Iw,Rw,u,v,w,e,se,&
 atol,btol,conlim,itnlim,nout,istop,anorm,&
 acond,rnorm,arnorm,xnorm)
!
! update kernel approximation
!
 x = x + e
!
! compute the new residual
!
 Mode = 1
 y = 0.0
 Call Aprod(Mode, m,ma2,x,y,Leniw,Lenrw, Iw,Rw)
 r2 = y ! Make y = Ax double precision
 resid = r1 - r2 ! r = b - Ax
 tmp = resid
 residnorm = MAXNORM(m,tmp)
 Print *, 'Residual maxnorm, iteration =', iter, residnorm
!
! pass in the new residual to get the next update
!
 u = resid
!
! go back for the next correction
!
 IF (iter >= maxiter) EXIT
!
 END DO
 CLOSE(nout)
!
 x = x - e
!
! Write out the final filter
!
 OPEN(UNIT = 4, FILE = BeamVector, STATUS = 'UNKNOWN')
 DO i = ma2,1,-1

 125

 WRITE(UNIT = 4, FMT = '(G15.6)') x(i)
 END DO
 CLOSE(4)
 DO i = 1,ma
 DO j = 1,ma
 k = (i-1)*ma + j
 h(ma-(j-1),ma-(i-1)) = x(k)
 END DO
 END DO
 OPEN(UNIT = 4, FILE = BeamMatrix, STATUS = 'UNKNOWN')
 DO i = 1,ma
 WRITE(UNIT = 4, FMT = BeamFMT) (h(i,j), j = 1,ma)
 END DO
 CLOSE(4)
!
! Deallocate memory
!
 DEALLOCATE(A, AT, x, b, u, v, w, se, F)
!
CONTAINS
!***
!
 FUNCTION MAXNORM(m, y)
!
!***
!
! This function overwrites y
!
 IMPLICIT NONE
 REAL :: MAXNORM
 INTEGER :: m, i
 REAL, INTENT(INOUT) :: y(m)
 DO i = 1,m
 y(i) = ABS(y(i))
 END DO
 MAXNORM = MAXVAL(y)
!
END FUNCTION MAXNORM
!
!
END PROGRAM Spread_Function
!
!***
!
 SUBROUTINE Aprod (Mode, m, n, x, y, Leniw, Lenrw, Iw, Rw)
!

 126

!
! This version of Aprod performs a convolution of a filter matrix, h, with an image
vector, x.
! It also applies the transpose of h to a filtered image vector y. The storage
! of images is by columns.
!
! The beam vector is stored in x of length n. It is generated from a square image
! of side ma so that n = ma*ma. If h(i,j), i, j = 1,ma is the beam, the structure of x is as
follows:
! x(1) = h(ma,ma), x(2) = h(ma-1,ma), ..., x(ma) = h(1, ma), x(ma + 1) = x(ma, ma-1), ...,
x(2*ma) = h(1, ma-1),
! ..., x(ma*ma) = h(1, 1).
!
! The blurred image vector is stored in y of length m. It is generated from a square
! image of side ng so that m = ng*ng. If, g(i, j), i, j = 1, ng is the blurred image, the
! structure of y is as follows:
! y(1) = g(1, 1), y(2) = g(2, 1), ..., y(ng) = g(ng, 1), y(ng + 1) = g(1, 2), ..., y (2*ng) =
! g(ng, 2), ..., y(ng*ng) = g(ng, ng)
!
! The matrix A is the sparse block Toeplitz matrix formed from the ground truth image of
! size ng*ng X ma*ma. AT is the transpose
!
! Aprod performs the following function:
!
! If Mode = 1, set y = y + A*x
! If Mode = 2, set x = x + (A^T) * y
!
! Iw and Rw are work arrays of length Leniw and Lenrw respectively. They are not
! used in this version of Aprod
!
!***
!
 USE LSQR_global
!
! This subroutine needs to be placed in a module to access global values for
! h, ma, nf, ng defined below
!
 IMPLICIT NONE
 INTEGER :: n, m, Leniw, Lenrw, Mode
 INTEGER :: i, j, ng2, ma2
 REAL :: x(n), y(m), Iw(Leniw), Rw(Lenrw)
 REAL :: sum
!
!
 ng2 = ng*ng
 ma2 = ma*ma

 127

!
!
!
!**
!
! Select the mode
!
!**
!
 IF (mode == 1) THEN
!
!**
!
! Mode = 1 -- Set y = y + A*x
!
!**
!
 DO i = 1,ng2
 sum = 0.0
 DO j = 1,ma2
 sum = sum + A(i,j)*x(j)
 END DO
 y(i) = y(i) + sum
 END DO
!
 ELSE
!
!**
!
! Mode = 2 -- Set x = x + (A^T)*y
!
!**
!
 DO i = 1,ma2
 sum = 0.0
 DO j = 1,ng2
 sum = sum + AT(i,j)*y(j)
 END DO
 x(i) = x(i) + sum
 END DO
!
 END IF
!
 END SUBROUTINE Aprod
!

 128

C5.3 Sample Input Parameter File

 11 095
 11
0100
yzint_Bar_1in_10m_data_105x105.txt
yzint_a_1in_10m_crop_95.txt
LSQR_output_1in_10m_95.txt
Beam_est_a_1in_10m_11x11.txt
0.001
0.0001
0.0001

 129

	1.0 Introduction
	2.0 Data Acquisition
	2.1 LADAR Specifications
	Figure 2.1. Laser Scanner.

	2.2 Reflective Material
	2.3 Reflectivity vs Distance Experiment
	2.4 Bar Code Patterns
	2.4.1 Recognizing a Simple Bar Pattern at Close Range
	2.4.2 Distinguishing Bar Patterns at Varying Distances
	2.4.3 MATLAB Bar Code Identification Procedure
	2.4.4 Bar Code Measurement Results

	2.5 Beam Property Measurements
	2.5.1 Beam Size and Divergence Characteristics
	2.5.2 Spread Function Measurements by Spot Reflection
	2.5.3 Summary of Beam Property Measurements

	3.0 Image Blurring Fundamentals
	4.0 Numerical Image Reconstruction Procedures
	5.0 Computational Results
	5.1 Creating Simulated Ground Truth Bar Code Data
	5.2 Creating Simulated Distorted Bar Code Images
	5.2.1 Simulated Three Beam Model
	5.2.2 Simulated Blurred Bar Codes

	5.3 Ground Truth Reconstruction Using Various Beam Spread Fu
	5.3.1 Reconstruction Using Averaging Filters
	5.3.2 Reconstruction Using Filters Based on Spot Reflections
	5.3.3 Convergence Aspects of the Reconstruction Process
	5.3.4 Reverse Engineering Filter Construction

	6.0 Summary and Future Directions
	6.1 Summary
	6.2. Future Work

	7.0 References
	APPENDIX A: Fast Matrix Vector Products
	A.1 Calculating Hf
	The algorithm proceeds as follows: Step through p = 1, 2, …,
	This algorithm can be implemented with 4 loops and 13 lines

	A.2 Calculating HTg

	APPENDIX B: LSQR Algorithm
	B.1 Computing U and V
	B.2 The sequential minimization algorithm

	APPENDIX C: Sample Programs
	C1. MATLAB Script to Isolate Bar Codes
	C2. MATLAB Script to Create Simulated Bar Codes
	C3. FORTRAN 90 Convolution Program
	C3.1 Program CONVOLVE.F90
	C3.2 Sample Input Parameter File

	C4. FORTRAN 90 Deconvolution Program
	C4.1 Program DECONVOLVE.F90
	C4.2 Sample Input Parameter File

	C5. FORTRAN 90 Program to Reverse Engineer the Beam Spread F
	C5.1 Matrix alignment
	C5.2 SPREAD_FUNCTION.F90 program
	C5.3 Sample Input Parameter File

